评估制革厂偶氮染料降解和实时出水的实验设计。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
P Aarthi, M Fathima Hajara, S Hemalatha, I Faridha Begum
{"title":"评估制革厂偶氮染料降解和实时出水的实验设计。","authors":"P Aarthi, M Fathima Hajara, S Hemalatha, I Faridha Begum","doi":"10.1007/s13205-025-04242-4","DOIUrl":null,"url":null,"abstract":"<p><p>Tannery wastewater (TWW) is highly complex and is characterised by high contents of organic, inorganic, and nitrogenous compounds, sulphides, chromium, dissolved solids, and suspended solids. Therefore, our novelty lies in identifying the microbes which are used to degrade harmful azo dyes present in tannery effluent. Based upon the rising problems in tannery industries, the untreated effluent is discharged; to achieve zero effluent, the organisms are isolated from tannery effluent identified as <i>Aeromonas hydrophila</i> (OQ690635) and screened against the degradation potential against the azo dyes and further processed the azo dye-degrading organism for 16S rRNA sequencing. The optimisation was done in various parameters, which resulted in the highest 94% degradation at 37 °C of 7 pH at the 60th hour in 10% of inoculum concentration, which influenced azo dye degradation and confirmed the degradation profile by FT-IR secondary alcohol, alkyne group, alcohol and nitro compounds, isothiocyanate, amine salt, alkyne had been removed and confirmed, also the treated Real-time effluent by novel bacteria which has shown 93% of degradation and also degradation profile by FT-IR and proven toxic free confirmed by GC-MS analysis. Thus, the bacteria isolated in this study can be used as eco-friendly biological expedients for the remediation and detoxification of azo dyes. This could be considered an efficient treatment method for various industrial effluents, as it provides zero sludge disposal during the treatment of industrial effluents.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 4","pages":"105"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961844/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental design for assessing the degradation of tannery azo dyes and real-time effluent.\",\"authors\":\"P Aarthi, M Fathima Hajara, S Hemalatha, I Faridha Begum\",\"doi\":\"10.1007/s13205-025-04242-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tannery wastewater (TWW) is highly complex and is characterised by high contents of organic, inorganic, and nitrogenous compounds, sulphides, chromium, dissolved solids, and suspended solids. Therefore, our novelty lies in identifying the microbes which are used to degrade harmful azo dyes present in tannery effluent. Based upon the rising problems in tannery industries, the untreated effluent is discharged; to achieve zero effluent, the organisms are isolated from tannery effluent identified as <i>Aeromonas hydrophila</i> (OQ690635) and screened against the degradation potential against the azo dyes and further processed the azo dye-degrading organism for 16S rRNA sequencing. The optimisation was done in various parameters, which resulted in the highest 94% degradation at 37 °C of 7 pH at the 60th hour in 10% of inoculum concentration, which influenced azo dye degradation and confirmed the degradation profile by FT-IR secondary alcohol, alkyne group, alcohol and nitro compounds, isothiocyanate, amine salt, alkyne had been removed and confirmed, also the treated Real-time effluent by novel bacteria which has shown 93% of degradation and also degradation profile by FT-IR and proven toxic free confirmed by GC-MS analysis. Thus, the bacteria isolated in this study can be used as eco-friendly biological expedients for the remediation and detoxification of azo dyes. This could be considered an efficient treatment method for various industrial effluents, as it provides zero sludge disposal during the treatment of industrial effluents.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 4\",\"pages\":\"105\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961844/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-025-04242-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-025-04242-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

制革厂废水(TWW)非常复杂,其特点是有机、无机和氮化合物、硫化物、铬、溶解固体和悬浮固体含量高。因此,我们的新颖之处在于识别用于降解皮革厂废水中有害偶氮染料的微生物。根据制革工业日益严重的问题,将未经处理的废水排放;为了实现零排放,从制革厂废水中分离出鉴定为嗜水气单胞菌(OQ690635)的生物,筛选对偶氮染料的降解潜力,并进一步对偶氮染料降解生物进行16S rRNA测序。在37℃、7 pH条件下,在接种量为10%的条件下,第60小时对偶氮染料的降解率最高,达到94%,这对偶氮染料的降解有影响,并证实了FT-IR对仲醇、炔基、醇和硝基化合物、异硫氰酸酯、胺盐、炔的降解效果。新型细菌处理后的实时出水降解率为93%,FT-IR和GC-MS分析均证实其无毒。因此,本研究分离的细菌可作为偶氮染料修复和解毒的环保生物助剂。这可以被认为是一种有效的处理各种工业废水的方法,因为它在处理工业废水期间提供零污泥处置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental design for assessing the degradation of tannery azo dyes and real-time effluent.

Tannery wastewater (TWW) is highly complex and is characterised by high contents of organic, inorganic, and nitrogenous compounds, sulphides, chromium, dissolved solids, and suspended solids. Therefore, our novelty lies in identifying the microbes which are used to degrade harmful azo dyes present in tannery effluent. Based upon the rising problems in tannery industries, the untreated effluent is discharged; to achieve zero effluent, the organisms are isolated from tannery effluent identified as Aeromonas hydrophila (OQ690635) and screened against the degradation potential against the azo dyes and further processed the azo dye-degrading organism for 16S rRNA sequencing. The optimisation was done in various parameters, which resulted in the highest 94% degradation at 37 °C of 7 pH at the 60th hour in 10% of inoculum concentration, which influenced azo dye degradation and confirmed the degradation profile by FT-IR secondary alcohol, alkyne group, alcohol and nitro compounds, isothiocyanate, amine salt, alkyne had been removed and confirmed, also the treated Real-time effluent by novel bacteria which has shown 93% of degradation and also degradation profile by FT-IR and proven toxic free confirmed by GC-MS analysis. Thus, the bacteria isolated in this study can be used as eco-friendly biological expedients for the remediation and detoxification of azo dyes. This could be considered an efficient treatment method for various industrial effluents, as it provides zero sludge disposal during the treatment of industrial effluents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信