{"title":"空间变化驱动下粒子系统的吸收态转换。","authors":"Bhanu Prasad Bhowmik and Christopher Ness","doi":"10.1039/D4SM01497A","DOIUrl":null,"url":null,"abstract":"<p >Non-equilibrium transitions into absorbing states are widespread, and amorphous materials under cyclic shear have emerged as useful model systems in which to study their properties. Recent work has focused on homogeneous driving in which the shear amplitude is uniform in space, despite most real world flows involving spatially inhomogeneous conditions that are known to produce qualitatively distinct phenomenology. Here we study the absorbing state transition under inhomogeneous driving using a modified random organization model. For smoothly varying driving the steady state results map onto the homogeneous absorbing state phase diagram, with the position of the boundary between absorbing and diffusive states being insensitive to the driving wavelength. The phenomenology is well-described by a one-dimensional generalized continuum model that we pose. For discontinuously varying driving the position of the absorbing phase boundary and the exponent characterising the fraction of active particles are altered relative to the homogeneous case.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 17","pages":" 3340-3346"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorbing-state transitions in particulate systems under spatially varying driving\",\"authors\":\"Bhanu Prasad Bhowmik and Christopher Ness\",\"doi\":\"10.1039/D4SM01497A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Non-equilibrium transitions into absorbing states are widespread, and amorphous materials under cyclic shear have emerged as useful model systems in which to study their properties. Recent work has focused on homogeneous driving in which the shear amplitude is uniform in space, despite most real world flows involving spatially inhomogeneous conditions that are known to produce qualitatively distinct phenomenology. Here we study the absorbing state transition under inhomogeneous driving using a modified random organization model. For smoothly varying driving the steady state results map onto the homogeneous absorbing state phase diagram, with the position of the boundary between absorbing and diffusive states being insensitive to the driving wavelength. The phenomenology is well-described by a one-dimensional generalized continuum model that we pose. For discontinuously varying driving the position of the absorbing phase boundary and the exponent characterising the fraction of active particles are altered relative to the homogeneous case.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" 17\",\"pages\":\" 3340-3346\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d4sm01497a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d4sm01497a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Absorbing-state transitions in particulate systems under spatially varying driving
Non-equilibrium transitions into absorbing states are widespread, and amorphous materials under cyclic shear have emerged as useful model systems in which to study their properties. Recent work has focused on homogeneous driving in which the shear amplitude is uniform in space, despite most real world flows involving spatially inhomogeneous conditions that are known to produce qualitatively distinct phenomenology. Here we study the absorbing state transition under inhomogeneous driving using a modified random organization model. For smoothly varying driving the steady state results map onto the homogeneous absorbing state phase diagram, with the position of the boundary between absorbing and diffusive states being insensitive to the driving wavelength. The phenomenology is well-described by a one-dimensional generalized continuum model that we pose. For discontinuously varying driving the position of the absorbing phase boundary and the exponent characterising the fraction of active particles are altered relative to the homogeneous case.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.