Xiaolu Wang, Xuan Liang, Yixuan Ku, Yinwei Zhan, Rong Song
{"title":"有效的运动技能学习诱导对侧前运动区和辅助运动区的倒u负荷依赖激活","authors":"Xiaolu Wang, Xuan Liang, Yixuan Ku, Yinwei Zhan, Rong Song","doi":"10.1002/hbm.70208","DOIUrl":null,"url":null,"abstract":"<p>Motor learning involves complex interactions between the cognitive and sensorimotor systems, which are susceptible to different levels of task load. While the mechanism underlying load-dependent regulations in cognitive functions has been extensively investigated, their influence on downstream execution in motor skill learning remains less understood. The current study extends the understanding of whether and how learning alters the load-dependent activation pattern by a longitudinal functional near-infrared spectroscopy (fNIRS) study in which 30 healthy participants (15 females) engaged in extensive practice on a two-dimensional continuous hand tracking task with varying task difficulty. We proposed the index of difficulty (ID) as a quantitative measure of task difficulty, which was monotonically associated with a psychometric measure of subjective workload. As learning progressed, participants exhibited enhanced behavioral and metacognitive performance. Behavioral improvements were accompanied by plastic changes in the inferior prefrontal cortex, reflecting a shift in control strategy during motor learning. Most importantly, we found robust evidence of the learning-induced alteration in load-dependent cortical activation patterns, indicating that effective motor skill learning may lead to the emergence of an inverted-U relationship between cortical activation and load level in the contralateral pre-motor and supplementary motor areas. Our findings provide new insights into the learning-induced plasticity in brain and behavior, highlighting the load-dependent contributions in motor skill learning.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70208","citationCount":"0","resultStr":"{\"title\":\"Effective Motor Skill Learning Induces Inverted-U Load-Dependent Activation in Contralateral Pre-Motor and Supplementary Motor Area\",\"authors\":\"Xiaolu Wang, Xuan Liang, Yixuan Ku, Yinwei Zhan, Rong Song\",\"doi\":\"10.1002/hbm.70208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motor learning involves complex interactions between the cognitive and sensorimotor systems, which are susceptible to different levels of task load. While the mechanism underlying load-dependent regulations in cognitive functions has been extensively investigated, their influence on downstream execution in motor skill learning remains less understood. The current study extends the understanding of whether and how learning alters the load-dependent activation pattern by a longitudinal functional near-infrared spectroscopy (fNIRS) study in which 30 healthy participants (15 females) engaged in extensive practice on a two-dimensional continuous hand tracking task with varying task difficulty. We proposed the index of difficulty (ID) as a quantitative measure of task difficulty, which was monotonically associated with a psychometric measure of subjective workload. As learning progressed, participants exhibited enhanced behavioral and metacognitive performance. Behavioral improvements were accompanied by plastic changes in the inferior prefrontal cortex, reflecting a shift in control strategy during motor learning. Most importantly, we found robust evidence of the learning-induced alteration in load-dependent cortical activation patterns, indicating that effective motor skill learning may lead to the emergence of an inverted-U relationship between cortical activation and load level in the contralateral pre-motor and supplementary motor areas. Our findings provide new insights into the learning-induced plasticity in brain and behavior, highlighting the load-dependent contributions in motor skill learning.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70208\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70208\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70208","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Effective Motor Skill Learning Induces Inverted-U Load-Dependent Activation in Contralateral Pre-Motor and Supplementary Motor Area
Motor learning involves complex interactions between the cognitive and sensorimotor systems, which are susceptible to different levels of task load. While the mechanism underlying load-dependent regulations in cognitive functions has been extensively investigated, their influence on downstream execution in motor skill learning remains less understood. The current study extends the understanding of whether and how learning alters the load-dependent activation pattern by a longitudinal functional near-infrared spectroscopy (fNIRS) study in which 30 healthy participants (15 females) engaged in extensive practice on a two-dimensional continuous hand tracking task with varying task difficulty. We proposed the index of difficulty (ID) as a quantitative measure of task difficulty, which was monotonically associated with a psychometric measure of subjective workload. As learning progressed, participants exhibited enhanced behavioral and metacognitive performance. Behavioral improvements were accompanied by plastic changes in the inferior prefrontal cortex, reflecting a shift in control strategy during motor learning. Most importantly, we found robust evidence of the learning-induced alteration in load-dependent cortical activation patterns, indicating that effective motor skill learning may lead to the emergence of an inverted-U relationship between cortical activation and load level in the contralateral pre-motor and supplementary motor areas. Our findings provide new insights into the learning-induced plasticity in brain and behavior, highlighting the load-dependent contributions in motor skill learning.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.