{"title":"典型度量在兰道-金兹堡模型中的一些应用","authors":"Jacopo Stoppa","doi":"10.1112/jlms.70148","DOIUrl":null,"url":null,"abstract":"<p>It is known that a given smooth del Pezzo surface or Fano threefold <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> admits a choice of log Calabi–Yau compactified mirror toric Landau–Ginzburg model (with respect to certain fixed Kähler classes and Gorenstein toric degenerations). Here we consider the problem of constructing a corresponding map <span></span><math>\n <semantics>\n <mi>Θ</mi>\n <annotation>$\\Theta$</annotation>\n </semantics></math> from a domain in the complexified Kähler cone of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> to a well-defined, separated moduli space <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathfrak {M}$</annotation>\n </semantics></math> of polarised manifolds endowed with a canonical metric. We prove a complete result for del Pezzos and a partial result for some special Fano threefolds. The construction uses some fundamental results in the theory of constant scalar curvature Kähler metrics. As a consequence <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathfrak {M}$</annotation>\n </semantics></math> parametrises <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-stable manifolds and the domain of <span></span><math>\n <semantics>\n <mi>Θ</mi>\n <annotation>$\\Theta$</annotation>\n </semantics></math> is endowed with the pullback of a Weil–Petersson form.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70148","citationCount":"0","resultStr":"{\"title\":\"Some applications of canonical metrics to Landau–Ginzburg models\",\"authors\":\"Jacopo Stoppa\",\"doi\":\"10.1112/jlms.70148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that a given smooth del Pezzo surface or Fano threefold <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> admits a choice of log Calabi–Yau compactified mirror toric Landau–Ginzburg model (with respect to certain fixed Kähler classes and Gorenstein toric degenerations). Here we consider the problem of constructing a corresponding map <span></span><math>\\n <semantics>\\n <mi>Θ</mi>\\n <annotation>$\\\\Theta$</annotation>\\n </semantics></math> from a domain in the complexified Kähler cone of <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> to a well-defined, separated moduli space <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathfrak {M}$</annotation>\\n </semantics></math> of polarised manifolds endowed with a canonical metric. We prove a complete result for del Pezzos and a partial result for some special Fano threefolds. The construction uses some fundamental results in the theory of constant scalar curvature Kähler metrics. As a consequence <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathfrak {M}$</annotation>\\n </semantics></math> parametrises <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-stable manifolds and the domain of <span></span><math>\\n <semantics>\\n <mi>Θ</mi>\\n <annotation>$\\\\Theta$</annotation>\\n </semantics></math> is endowed with the pullback of a Weil–Petersson form.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70148\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70148\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70148","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,给定的光滑 del Pezzo 表面或法诺三折 X $X$ 允许选择 log Calabi-Yau 紧凑化镜像环状 Landau-Ginzburg 模型(关于某些固定的 Kähler 类和 Gorenstein 环状退化)。在这里,我们考虑的问题是构建一个相应的映射 Θ $\Theta$ ,从 X $X$ 的复化凯勒锥中的一个域到一个定义明确的、分离的模空间 M $\mathfrak {M}$ 的极化流形,并赋予一个规范度量。我们证明了 del Pezzos 的完整结果和一些特殊法诺三维的部分结果。该构造使用了恒定标量曲率凯勒度量理论中的一些基本结果。因此,M $\mathfrak {M}$ 参数包含了 K $K$ 稳定流形,并且 Θ $\Theta$ 的域被赋予了魏尔-彼得森形式的回拉。
Some applications of canonical metrics to Landau–Ginzburg models
It is known that a given smooth del Pezzo surface or Fano threefold admits a choice of log Calabi–Yau compactified mirror toric Landau–Ginzburg model (with respect to certain fixed Kähler classes and Gorenstein toric degenerations). Here we consider the problem of constructing a corresponding map from a domain in the complexified Kähler cone of to a well-defined, separated moduli space of polarised manifolds endowed with a canonical metric. We prove a complete result for del Pezzos and a partial result for some special Fano threefolds. The construction uses some fundamental results in the theory of constant scalar curvature Kähler metrics. As a consequence parametrises -stable manifolds and the domain of is endowed with the pullback of a Weil–Petersson form.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.