{"title":"非编码 RNA(miRNA-circRNA-lncRNA)和基因在调控白癜风方面的相互作用","authors":"Ahmed Ibrahim AbdElneam, Ghada Farouk Mohammed","doi":"10.1007/s00403-025-04113-1","DOIUrl":null,"url":null,"abstract":"<div><p>Vitiligo is a chronic skin disorder characterized by the loss of melanocytes, resulting in depigmented patches on the skin. The molecular mechanisms underlying vitiligo remain incompletely understood, with recent studies highlighting the role of non-coding RNAs in disease pathogenesis. To identify and analyze the roles of miRNAs, (circular RNAs) circRNAs, and (long non-coding RNAs) lncRNAs in the pathogenesis of vitiligo, focusing on their interactions with key coding genes and pathways. We utilized Microarray data from the GSE65127 and GSE75819 datasets in the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) related to Vitiligo. The analysis was conducted using GEO2R for identifying upregulated and downregulated genes. Protein-protein interaction (PPI) networks were constructed using STRING and further analyzed with Cytoscape and CytoHubba. Gene Ontology (GO), disease pathways, Disease gene associations, and phenotypes are determined by many online software. miRNAs and cirRNas, lncRNAs were predicted using bioinformatics tools. The constructed network identified AKT1 as a central hub, hsa-miR-140-3p assumes a critical role by interacting with both AKT1 and CTSD, while circRNAs such as hsa_circ_0020776, hsa_circ_0033552, and hsa_circ_0020773 significantly modulate these interactions. Also, hsa-miR-921 is highly effective in binding to AKT1, as well as to hsa_circ_0033546 and hsa_circ_0033547. lncRNAs, including AFAP1-AS1 and MALAT1, contribute to the network by establishing connections with the mRNA of target genes. we determined two genes, two miRNAs, and 5 circRNAs may serve as potential biomarkers or therapeutic targets for vitiligo.</p></div>","PeriodicalId":8203,"journal":{"name":"Archives of Dermatological Research","volume":"317 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-coding RNAs (miRNAs – circRNAs - lncRNAs) and genes interact with the regulation of vitiligo\",\"authors\":\"Ahmed Ibrahim AbdElneam, Ghada Farouk Mohammed\",\"doi\":\"10.1007/s00403-025-04113-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vitiligo is a chronic skin disorder characterized by the loss of melanocytes, resulting in depigmented patches on the skin. The molecular mechanisms underlying vitiligo remain incompletely understood, with recent studies highlighting the role of non-coding RNAs in disease pathogenesis. To identify and analyze the roles of miRNAs, (circular RNAs) circRNAs, and (long non-coding RNAs) lncRNAs in the pathogenesis of vitiligo, focusing on their interactions with key coding genes and pathways. We utilized Microarray data from the GSE65127 and GSE75819 datasets in the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) related to Vitiligo. The analysis was conducted using GEO2R for identifying upregulated and downregulated genes. Protein-protein interaction (PPI) networks were constructed using STRING and further analyzed with Cytoscape and CytoHubba. Gene Ontology (GO), disease pathways, Disease gene associations, and phenotypes are determined by many online software. miRNAs and cirRNas, lncRNAs were predicted using bioinformatics tools. The constructed network identified AKT1 as a central hub, hsa-miR-140-3p assumes a critical role by interacting with both AKT1 and CTSD, while circRNAs such as hsa_circ_0020776, hsa_circ_0033552, and hsa_circ_0020773 significantly modulate these interactions. Also, hsa-miR-921 is highly effective in binding to AKT1, as well as to hsa_circ_0033546 and hsa_circ_0033547. lncRNAs, including AFAP1-AS1 and MALAT1, contribute to the network by establishing connections with the mRNA of target genes. we determined two genes, two miRNAs, and 5 circRNAs may serve as potential biomarkers or therapeutic targets for vitiligo.</p></div>\",\"PeriodicalId\":8203,\"journal\":{\"name\":\"Archives of Dermatological Research\",\"volume\":\"317 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Dermatological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00403-025-04113-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Dermatological Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00403-025-04113-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Non-coding RNAs (miRNAs – circRNAs - lncRNAs) and genes interact with the regulation of vitiligo
Vitiligo is a chronic skin disorder characterized by the loss of melanocytes, resulting in depigmented patches on the skin. The molecular mechanisms underlying vitiligo remain incompletely understood, with recent studies highlighting the role of non-coding RNAs in disease pathogenesis. To identify and analyze the roles of miRNAs, (circular RNAs) circRNAs, and (long non-coding RNAs) lncRNAs in the pathogenesis of vitiligo, focusing on their interactions with key coding genes and pathways. We utilized Microarray data from the GSE65127 and GSE75819 datasets in the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) related to Vitiligo. The analysis was conducted using GEO2R for identifying upregulated and downregulated genes. Protein-protein interaction (PPI) networks were constructed using STRING and further analyzed with Cytoscape and CytoHubba. Gene Ontology (GO), disease pathways, Disease gene associations, and phenotypes are determined by many online software. miRNAs and cirRNas, lncRNAs were predicted using bioinformatics tools. The constructed network identified AKT1 as a central hub, hsa-miR-140-3p assumes a critical role by interacting with both AKT1 and CTSD, while circRNAs such as hsa_circ_0020776, hsa_circ_0033552, and hsa_circ_0020773 significantly modulate these interactions. Also, hsa-miR-921 is highly effective in binding to AKT1, as well as to hsa_circ_0033546 and hsa_circ_0033547. lncRNAs, including AFAP1-AS1 and MALAT1, contribute to the network by establishing connections with the mRNA of target genes. we determined two genes, two miRNAs, and 5 circRNAs may serve as potential biomarkers or therapeutic targets for vitiligo.
期刊介绍:
Archives of Dermatological Research is a highly rated international journal that publishes original contributions in the field of experimental dermatology, including papers on biochemistry, morphology and immunology of the skin. The journal is among the few not related to dermatological associations or belonging to respective societies which guarantees complete independence. This English-language journal also offers a platform for review articles in areas of interest for dermatologists and for publication of innovative clinical trials.