生物燃料生产中的纳米技术:通过纳米材料提高效率和可持续性

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Ashish Goyal, Pradeep Kumar Meena, Sagar Shelare
{"title":"生物燃料生产中的纳米技术:通过纳米材料提高效率和可持续性","authors":"Ashish Goyal,&nbsp;Pradeep Kumar Meena,&nbsp;Sagar Shelare","doi":"10.1007/s10876-025-02797-z","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing global dependence on biofuels as an alternative to fossil fuels has spurred extensive research into optimizing their production processes. Nanotechnology has emerged as a game-changing tool for enhancing biofuel yield, purity, and efficiency, offering significant commercial potential. This review critically examines the applications of various nanomaterials—such as graphene, carbon nanotubes, metallic nanoparticles, nanocomposites, and nanoscale biochar—in enhancing the conversion of diverse feedstocks, including lignocellulosic biomass, microalgae, and organic waste, into biodiesel, bioethanol, biohydrogen, and biogas. The novel integration of metallic nanoparticles and carbon-based nanomaterials in enzymatic hydrolysis, transesterification, and fermentation has markedly improved biofuel yields and reduced production costs, creating opportunities for scalable and commercially viable biofuel production. Additionally, nanomaterials enhance biofuel quality by facilitating advanced purification techniques that optimize separation processes. Despite these promising advancements, environmental and toxicity concerns surrounding the use of nanoparticles remain significant challenges. This study identifies key research gaps, including scalability, lifecycle assessments, and establishing regulatory frameworks, which must be addressed for effective commercialization. Future research must optimize the synthesis of eco-friendly, cost-effective nanoparticles while minimizing environmental risks. The findings emphasize the need for an integrated, nanotechnology-driven approach to achieve sustainable, economically viable biofuel production on a commercial scale.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology in Biofuel Production: Enhancing Efficiency and Sustainability Through Nanomaterials\",\"authors\":\"Ashish Goyal,&nbsp;Pradeep Kumar Meena,&nbsp;Sagar Shelare\",\"doi\":\"10.1007/s10876-025-02797-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing global dependence on biofuels as an alternative to fossil fuels has spurred extensive research into optimizing their production processes. Nanotechnology has emerged as a game-changing tool for enhancing biofuel yield, purity, and efficiency, offering significant commercial potential. This review critically examines the applications of various nanomaterials—such as graphene, carbon nanotubes, metallic nanoparticles, nanocomposites, and nanoscale biochar—in enhancing the conversion of diverse feedstocks, including lignocellulosic biomass, microalgae, and organic waste, into biodiesel, bioethanol, biohydrogen, and biogas. The novel integration of metallic nanoparticles and carbon-based nanomaterials in enzymatic hydrolysis, transesterification, and fermentation has markedly improved biofuel yields and reduced production costs, creating opportunities for scalable and commercially viable biofuel production. Additionally, nanomaterials enhance biofuel quality by facilitating advanced purification techniques that optimize separation processes. Despite these promising advancements, environmental and toxicity concerns surrounding the use of nanoparticles remain significant challenges. This study identifies key research gaps, including scalability, lifecycle assessments, and establishing regulatory frameworks, which must be addressed for effective commercialization. Future research must optimize the synthesis of eco-friendly, cost-effective nanoparticles while minimizing environmental risks. The findings emphasize the need for an integrated, nanotechnology-driven approach to achieve sustainable, economically viable biofuel production on a commercial scale.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-025-02797-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02797-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

全球对生物燃料作为化石燃料替代品的依赖与日俱增,推动了对生物燃料生产工艺优化的广泛研究。纳米技术已成为改变游戏规则的工具,可提高生物燃料的产量、纯度和效率,具有巨大的商业潜力。本综述认真研究了各种纳米材料(如石墨烯、碳纳米管、金属纳米颗粒、纳米复合材料和纳米级生物炭)在促进木质纤维素生物质、微藻和有机废物等各种原料转化为生物柴油、生物乙醇、生物氢和沼气方面的应用。金属纳米粒子和碳基纳米材料在酶水解、酯交换和发酵过程中的新颖整合,显著提高了生物燃料的产量,降低了生产成本,为可扩展的、商业上可行的生物燃料生产创造了机会。此外,纳米材料还能促进优化分离过程的先进纯化技术,从而提高生物燃料的质量。尽管取得了这些令人鼓舞的进步,但围绕纳米颗粒使用的环境和毒性问题仍是重大挑战。本研究确定了关键的研究差距,包括可扩展性、生命周期评估和建立监管框架,这些都是有效商业化必须解决的问题。未来的研究必须优化生态友好、经济高效的纳米粒子的合成,同时最大限度地降低环境风险。研究结果强调,要实现可持续的、经济上可行的商业规模生物燃料生产,必须采用纳米技术驱动的综合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanotechnology in Biofuel Production: Enhancing Efficiency and Sustainability Through Nanomaterials

The increasing global dependence on biofuels as an alternative to fossil fuels has spurred extensive research into optimizing their production processes. Nanotechnology has emerged as a game-changing tool for enhancing biofuel yield, purity, and efficiency, offering significant commercial potential. This review critically examines the applications of various nanomaterials—such as graphene, carbon nanotubes, metallic nanoparticles, nanocomposites, and nanoscale biochar—in enhancing the conversion of diverse feedstocks, including lignocellulosic biomass, microalgae, and organic waste, into biodiesel, bioethanol, biohydrogen, and biogas. The novel integration of metallic nanoparticles and carbon-based nanomaterials in enzymatic hydrolysis, transesterification, and fermentation has markedly improved biofuel yields and reduced production costs, creating opportunities for scalable and commercially viable biofuel production. Additionally, nanomaterials enhance biofuel quality by facilitating advanced purification techniques that optimize separation processes. Despite these promising advancements, environmental and toxicity concerns surrounding the use of nanoparticles remain significant challenges. This study identifies key research gaps, including scalability, lifecycle assessments, and establishing regulatory frameworks, which must be addressed for effective commercialization. Future research must optimize the synthesis of eco-friendly, cost-effective nanoparticles while minimizing environmental risks. The findings emphasize the need for an integrated, nanotechnology-driven approach to achieve sustainable, economically viable biofuel production on a commercial scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信