极地西伯利亚古利碱性-超基性复合岩中的钙钛矿和透辉石的成分演变

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
L. N. Kogarko, N. V. Sorokhtina, N. N. Kononkova
{"title":"极地西伯利亚古利碱性-超基性复合岩中的钙钛矿和透辉石的成分演变","authors":"L. N. Kogarko,&nbsp;N. V. Sorokhtina,&nbsp;N. N. Kononkova","doi":"10.1134/S0016702924700885","DOIUrl":null,"url":null,"abstract":"<p>The paper presents data on the composition and phase heterogeneity of calzirtite Ca<sub>2</sub>Zr<sub>5</sub>Ti<sub>2</sub>O<sub>16</sub> and perovskite CaTiO<sub>3</sub>, which are HFSE oxides that crystallized during the early stages of formation of the carbonatite rock series of the Guli alkaline–ultramafic complex in Polar Siberia. The composition of HFSE minerals systematically changed during the evolution of the carbonatite melt from phoscorites to carbonatites. The calzirtite enriched up to 6 wt % Nb<sub>2</sub>O<sub>5</sub>, and the perovskite enriched up to 15 wt % Nb<sub>2</sub>O<sub>5</sub>, 7.7 wt % ZrO<sub>2</sub>, and 6 wt % LREE<sub>2</sub>O<sub>3</sub> in the phoscorites and early calcite carbonatites. Perovskite with low concentrations of admixtures crystallized in the late calcite carbonatites in association with U-, Th-, Ta-rich fluorcalciopyrochlore, thorianite, zirconolite, and baddeleyite. The composition of perovskite-group minerals evolved according to the following of isomorphic exchange schemes: Nb<sup>5+</sup> + Fe<sup>3+</sup> ↔ Ti<sup>4+</sup> + Zr<sup>4+</sup> and 2Ca<sup>2+</sup> ↔ Na<sup>+</sup> + REE<sup>3+</sup>. The enrichment of the early calzirtite and perovskite generations in HFSE is explained by the high Nb, Zr, and LREE partition coefficients in carbonatite melt–mineral equilibria. During the crystallization of the carbonatite melt, the activity of alkaline elements decreased, which is confirmed by a decrease in sodium content in the perovskite and a change in the composition of the solid inclusions. The early generations of perovskite and calzirtite from the phoscorites commonly host numerous polyphase inclusions of Ca, Na, K, Ba, and Sr carbonates, halides, and alkali metal sulfides, whereas calcite, fluorapatite, pyrophanite, and barite are found in the late generations of these minerals. It is shown that the crystallization of the phoscorites have crystallized from anhydrous melt that contained no water, and this was favorable for the preservation of alkaline carbonates as solid inclusions in minerals.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 2","pages":"153 - 171"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compositional Evolution of Calzirtite and Perovskite in Phoscorites and Carbonatites of the Guli Alkaline–Ultramafic Complex, Polar Siberia\",\"authors\":\"L. N. Kogarko,&nbsp;N. V. Sorokhtina,&nbsp;N. N. Kononkova\",\"doi\":\"10.1134/S0016702924700885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents data on the composition and phase heterogeneity of calzirtite Ca<sub>2</sub>Zr<sub>5</sub>Ti<sub>2</sub>O<sub>16</sub> and perovskite CaTiO<sub>3</sub>, which are HFSE oxides that crystallized during the early stages of formation of the carbonatite rock series of the Guli alkaline–ultramafic complex in Polar Siberia. The composition of HFSE minerals systematically changed during the evolution of the carbonatite melt from phoscorites to carbonatites. The calzirtite enriched up to 6 wt % Nb<sub>2</sub>O<sub>5</sub>, and the perovskite enriched up to 15 wt % Nb<sub>2</sub>O<sub>5</sub>, 7.7 wt % ZrO<sub>2</sub>, and 6 wt % LREE<sub>2</sub>O<sub>3</sub> in the phoscorites and early calcite carbonatites. Perovskite with low concentrations of admixtures crystallized in the late calcite carbonatites in association with U-, Th-, Ta-rich fluorcalciopyrochlore, thorianite, zirconolite, and baddeleyite. The composition of perovskite-group minerals evolved according to the following of isomorphic exchange schemes: Nb<sup>5+</sup> + Fe<sup>3+</sup> ↔ Ti<sup>4+</sup> + Zr<sup>4+</sup> and 2Ca<sup>2+</sup> ↔ Na<sup>+</sup> + REE<sup>3+</sup>. The enrichment of the early calzirtite and perovskite generations in HFSE is explained by the high Nb, Zr, and LREE partition coefficients in carbonatite melt–mineral equilibria. During the crystallization of the carbonatite melt, the activity of alkaline elements decreased, which is confirmed by a decrease in sodium content in the perovskite and a change in the composition of the solid inclusions. The early generations of perovskite and calzirtite from the phoscorites commonly host numerous polyphase inclusions of Ca, Na, K, Ba, and Sr carbonates, halides, and alkali metal sulfides, whereas calcite, fluorapatite, pyrophanite, and barite are found in the late generations of these minerals. It is shown that the crystallization of the phoscorites have crystallized from anhydrous melt that contained no water, and this was favorable for the preservation of alkaline carbonates as solid inclusions in minerals.</p>\",\"PeriodicalId\":12781,\"journal\":{\"name\":\"Geochemistry International\",\"volume\":\"63 2\",\"pages\":\"153 - 171\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016702924700885\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702924700885","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Compositional Evolution of Calzirtite and Perovskite in Phoscorites and Carbonatites of the Guli Alkaline–Ultramafic Complex, Polar Siberia

Compositional Evolution of Calzirtite and Perovskite in Phoscorites and Carbonatites of the Guli Alkaline–Ultramafic Complex, Polar Siberia

The paper presents data on the composition and phase heterogeneity of calzirtite Ca2Zr5Ti2O16 and perovskite CaTiO3, which are HFSE oxides that crystallized during the early stages of formation of the carbonatite rock series of the Guli alkaline–ultramafic complex in Polar Siberia. The composition of HFSE minerals systematically changed during the evolution of the carbonatite melt from phoscorites to carbonatites. The calzirtite enriched up to 6 wt % Nb2O5, and the perovskite enriched up to 15 wt % Nb2O5, 7.7 wt % ZrO2, and 6 wt % LREE2O3 in the phoscorites and early calcite carbonatites. Perovskite with low concentrations of admixtures crystallized in the late calcite carbonatites in association with U-, Th-, Ta-rich fluorcalciopyrochlore, thorianite, zirconolite, and baddeleyite. The composition of perovskite-group minerals evolved according to the following of isomorphic exchange schemes: Nb5+ + Fe3+ ↔ Ti4+ + Zr4+ and 2Ca2+ ↔ Na+ + REE3+. The enrichment of the early calzirtite and perovskite generations in HFSE is explained by the high Nb, Zr, and LREE partition coefficients in carbonatite melt–mineral equilibria. During the crystallization of the carbonatite melt, the activity of alkaline elements decreased, which is confirmed by a decrease in sodium content in the perovskite and a change in the composition of the solid inclusions. The early generations of perovskite and calzirtite from the phoscorites commonly host numerous polyphase inclusions of Ca, Na, K, Ba, and Sr carbonates, halides, and alkali metal sulfides, whereas calcite, fluorapatite, pyrophanite, and barite are found in the late generations of these minerals. It is shown that the crystallization of the phoscorites have crystallized from anhydrous melt that contained no water, and this was favorable for the preservation of alkaline carbonates as solid inclusions in minerals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry International
Geochemistry International 地学-地球化学与地球物理
CiteScore
1.60
自引率
12.50%
发文量
89
审稿时长
1 months
期刊介绍: Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信