{"title":"噻唑喹啉酮衍生物的合成:分子对接、MD模拟和VEGFR-2抑制剂的药理评价","authors":"Zeinab Amiri, Mohammad Bayat, Davood Gheidari","doi":"10.1186/s13065-025-01459-5","DOIUrl":null,"url":null,"abstract":"<div><p>We synthesized a series of novel thiazoloquinolinone derivatives, achieving moderate to high yields ranging from 74 to 96%, and assessed their efficacy against Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) using in silico methodologies. The structures of these compounds were characterized through various spectroscopic techniques, including <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, IR, and mass spectrometry. Comprehensive computational analyses, encompassing molecular docking, molecular dynamics (MD) simulations, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling, were conducted. Docking studies with VEGFR-2 revealed that all synthesized compounds exhibited docking scores between − 3.24 and − 6.63, indicating varying degrees of binding affinity. Notably, compound <b>(5e)</b> demonstrated the strongest binding affinity with an energy of − 6.63 kcal/mol. The MD simulations indicated that Lys868 was one of the amino acids exhibiting the highest frequency of interaction throughout the simulation. Analysis of the ADMET and physicochemical properties revealed that all inhibitor compounds possess favorable pharmacological characteristics.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01459-5","citationCount":"0","resultStr":"{\"title\":\"Synthesis of thiazoloquinolinone derivatives: molecular docking, MD simulation, and pharmacological evaluation as VEGFR-2 inhibitors\",\"authors\":\"Zeinab Amiri, Mohammad Bayat, Davood Gheidari\",\"doi\":\"10.1186/s13065-025-01459-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We synthesized a series of novel thiazoloquinolinone derivatives, achieving moderate to high yields ranging from 74 to 96%, and assessed their efficacy against Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) using in silico methodologies. The structures of these compounds were characterized through various spectroscopic techniques, including <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, IR, and mass spectrometry. Comprehensive computational analyses, encompassing molecular docking, molecular dynamics (MD) simulations, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling, were conducted. Docking studies with VEGFR-2 revealed that all synthesized compounds exhibited docking scores between − 3.24 and − 6.63, indicating varying degrees of binding affinity. Notably, compound <b>(5e)</b> demonstrated the strongest binding affinity with an energy of − 6.63 kcal/mol. The MD simulations indicated that Lys868 was one of the amino acids exhibiting the highest frequency of interaction throughout the simulation. Analysis of the ADMET and physicochemical properties revealed that all inhibitor compounds possess favorable pharmacological characteristics.</p></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01459-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-025-01459-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01459-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of thiazoloquinolinone derivatives: molecular docking, MD simulation, and pharmacological evaluation as VEGFR-2 inhibitors
We synthesized a series of novel thiazoloquinolinone derivatives, achieving moderate to high yields ranging from 74 to 96%, and assessed their efficacy against Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) using in silico methodologies. The structures of these compounds were characterized through various spectroscopic techniques, including 1H-NMR, 13C-NMR, IR, and mass spectrometry. Comprehensive computational analyses, encompassing molecular docking, molecular dynamics (MD) simulations, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling, were conducted. Docking studies with VEGFR-2 revealed that all synthesized compounds exhibited docking scores between − 3.24 and − 6.63, indicating varying degrees of binding affinity. Notably, compound (5e) demonstrated the strongest binding affinity with an energy of − 6.63 kcal/mol. The MD simulations indicated that Lys868 was one of the amino acids exhibiting the highest frequency of interaction throughout the simulation. Analysis of the ADMET and physicochemical properties revealed that all inhibitor compounds possess favorable pharmacological characteristics.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.