DEFORM:受限环境下多机器人系统的自适应队形重构

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Jin Li;Yang Xu;Xiufang Shi;Liang Li
{"title":"DEFORM:受限环境下多机器人系统的自适应队形重构","authors":"Jin Li;Yang Xu;Xiufang Shi;Liang Li","doi":"10.1109/LRA.2025.3552998","DOIUrl":null,"url":null,"abstract":"Achieving desired formation patterns without collisions is rather challenging for multi-robot systems in unknown obstacle-rich and confined environments, especially in narrow corridor scenes containing large-volume obstacles. To address this, we propose an adaptive formation reconfiguration method that can dynamically switch to the optimal formation pattern based on the current obstacle distribution. Specifically, we develop a novel obstacle-free maximum passable width detection method to formulate recursive optimization problems, which can determine the currently best formation shape and refine local goals away from obstacles. Then, we design a task assignment module for the temporary leader robot and a consensus-based distributed formation controller for each robot using model predictive control to ensure rapid convergence to the suggested formation shape. In addition, we utilize the potential field approach for each robot to improve collision avoidance. Extensive Gazebo simulations and real-world experiments in confined and obstacle-rich scenes verify the efficient formation convergence of our methods compared to the previous methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4706-4713"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEFORM: Adaptive Formation Reconfiguration of Multi-Robot Systems in Confined Environments\",\"authors\":\"Jin Li;Yang Xu;Xiufang Shi;Liang Li\",\"doi\":\"10.1109/LRA.2025.3552998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving desired formation patterns without collisions is rather challenging for multi-robot systems in unknown obstacle-rich and confined environments, especially in narrow corridor scenes containing large-volume obstacles. To address this, we propose an adaptive formation reconfiguration method that can dynamically switch to the optimal formation pattern based on the current obstacle distribution. Specifically, we develop a novel obstacle-free maximum passable width detection method to formulate recursive optimization problems, which can determine the currently best formation shape and refine local goals away from obstacles. Then, we design a task assignment module for the temporary leader robot and a consensus-based distributed formation controller for each robot using model predictive control to ensure rapid convergence to the suggested formation shape. In addition, we utilize the potential field approach for each robot to improve collision avoidance. Extensive Gazebo simulations and real-world experiments in confined and obstacle-rich scenes verify the efficient formation convergence of our methods compared to the previous methods.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 5\",\"pages\":\"4706-4713\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10933518/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10933518/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

对于多机器人系统来说,在充满未知障碍物和受限的环境中,特别是在包含大量障碍物的狭窄走廊场景中,实现理想的编队模式而不发生碰撞是相当具有挑战性的。为了解决这个问题,我们提出了一种基于当前障碍物分布动态切换到最优队形的自适应队形重构方法。具体而言,我们开发了一种新的无障碍物最大可通过宽度检测方法来制定递归优化问题,该方法可以确定当前最佳的队形并细化远离障碍物的局部目标。然后,我们设计了临时领导机器人的任务分配模块,并使用模型预测控制为每个机器人设计了基于共识的分布式队列控制器,以确保快速收敛到建议的队列形状。此外,我们利用势场方法来提高每个机器人的避碰能力。大量的Gazebo仿真和在受限和多障碍物场景下的实际实验验证了我们的方法与之前的方法相比具有高效的编队收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEFORM: Adaptive Formation Reconfiguration of Multi-Robot Systems in Confined Environments
Achieving desired formation patterns without collisions is rather challenging for multi-robot systems in unknown obstacle-rich and confined environments, especially in narrow corridor scenes containing large-volume obstacles. To address this, we propose an adaptive formation reconfiguration method that can dynamically switch to the optimal formation pattern based on the current obstacle distribution. Specifically, we develop a novel obstacle-free maximum passable width detection method to formulate recursive optimization problems, which can determine the currently best formation shape and refine local goals away from obstacles. Then, we design a task assignment module for the temporary leader robot and a consensus-based distributed formation controller for each robot using model predictive control to ensure rapid convergence to the suggested formation shape. In addition, we utilize the potential field approach for each robot to improve collision avoidance. Extensive Gazebo simulations and real-world experiments in confined and obstacle-rich scenes verify the efficient formation convergence of our methods compared to the previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信