性能驱动的MPC约束最优自动调谐器

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Albert Gassol Puigjaner;Manish Prajapat;Andrea Carron;Andreas Krause;Melanie N. Zeilinger
{"title":"性能驱动的MPC约束最优自动调谐器","authors":"Albert Gassol Puigjaner;Manish Prajapat;Andrea Carron;Andreas Krause;Melanie N. Zeilinger","doi":"10.1109/LRA.2025.3550838","DOIUrl":null,"url":null,"abstract":"A key challenge in tuning Model Predictive Control (<sc>MPC</small>) cost function parameters is to ensure that the system performance stays consistently above a certain threshold. To address this challenge, we propose a novel method, <sc>COAt-MPC</small>, Constrained Optimal Auto-Tuner for <sc>MPC</small>. With every tuning iteration, <sc>COAt-MPC</small> gathers performance data and learns by updating its posterior belief. It explores the tuning parameters' domain towards optimistic parameters in a goal-directed fashion, which is key to its sample efficiency. We theoretically analyze <sc>COAt-MPC</small>, showing that it satisfies performance constraints with arbitrarily high probability at all times and provably converges to the optimum performance within finite time. Through comprehensive simulations and comparative analyses with a hardware platform, we demonstrate the effectiveness of <sc>COAt-MPC</small> in comparison to classical Bayesian Optimization (BO) and other state-of-the-art methods. When applied to autonomous racing, our approach outperforms baselines in terms of constraint violations and cumulative regret over time.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4698-4705"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance-Driven Constrained Optimal Auto-Tuner for MPC\",\"authors\":\"Albert Gassol Puigjaner;Manish Prajapat;Andrea Carron;Andreas Krause;Melanie N. Zeilinger\",\"doi\":\"10.1109/LRA.2025.3550838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key challenge in tuning Model Predictive Control (<sc>MPC</small>) cost function parameters is to ensure that the system performance stays consistently above a certain threshold. To address this challenge, we propose a novel method, <sc>COAt-MPC</small>, Constrained Optimal Auto-Tuner for <sc>MPC</small>. With every tuning iteration, <sc>COAt-MPC</small> gathers performance data and learns by updating its posterior belief. It explores the tuning parameters' domain towards optimistic parameters in a goal-directed fashion, which is key to its sample efficiency. We theoretically analyze <sc>COAt-MPC</small>, showing that it satisfies performance constraints with arbitrarily high probability at all times and provably converges to the optimum performance within finite time. Through comprehensive simulations and comparative analyses with a hardware platform, we demonstrate the effectiveness of <sc>COAt-MPC</small> in comparison to classical Bayesian Optimization (BO) and other state-of-the-art methods. When applied to autonomous racing, our approach outperforms baselines in terms of constraint violations and cumulative regret over time.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 5\",\"pages\":\"4698-4705\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10924398/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10924398/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

调整模型预测控制(MPC)成本函数参数的一个关键挑战是确保系统性能始终保持在某个阈值以上。为了解决这一挑战,我们提出了一种新的方法,COAt-MPC,约束最优MPC自动调谐器。在每次调优迭代中,COAt-MPC都会收集性能数据,并通过更新后验信念进行学习。它以目标导向的方式探索对乐观参数的调谐参数域,这是其样本效率的关键。从理论上分析了COAt-MPC算法,证明了它在任何时候都以任意高概率满足性能约束,并可证明在有限时间内收敛到最优性能。通过综合仿真和与硬件平台的比较分析,我们证明了与经典贝叶斯优化(BO)和其他最先进的方法相比,COAt-MPC的有效性。当应用于自动驾驶赛车时,我们的方法在违反约束和累积遗憾方面优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance-Driven Constrained Optimal Auto-Tuner for MPC
A key challenge in tuning Model Predictive Control (MPC) cost function parameters is to ensure that the system performance stays consistently above a certain threshold. To address this challenge, we propose a novel method, COAt-MPC, Constrained Optimal Auto-Tuner for MPC. With every tuning iteration, COAt-MPC gathers performance data and learns by updating its posterior belief. It explores the tuning parameters' domain towards optimistic parameters in a goal-directed fashion, which is key to its sample efficiency. We theoretically analyze COAt-MPC, showing that it satisfies performance constraints with arbitrarily high probability at all times and provably converges to the optimum performance within finite time. Through comprehensive simulations and comparative analyses with a hardware platform, we demonstrate the effectiveness of COAt-MPC in comparison to classical Bayesian Optimization (BO) and other state-of-the-art methods. When applied to autonomous racing, our approach outperforms baselines in terms of constraint violations and cumulative regret over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信