Ghassen Zin Elabedine , Yana S. Didenko , Pavel Loiko , Kirill A. Subbotin , Anatolii I. Titov , Liudmila D. Iskhakova , Denis A. Lis , Sergei K. Pavlov , Yulia I. Zimina , Kristina V. Kuleshova , Rosa Maria Solé , Magdalena Aguiló , Francesc Díaz , Patrice Camy , Xavier Mateos
{"title":"多位MgMoO4晶体中Yb3+离子的光谱研究","authors":"Ghassen Zin Elabedine , Yana S. Didenko , Pavel Loiko , Kirill A. Subbotin , Anatolii I. Titov , Liudmila D. Iskhakova , Denis A. Lis , Sergei K. Pavlov , Yulia I. Zimina , Kristina V. Kuleshova , Rosa Maria Solé , Magdalena Aguiló , Francesc Díaz , Patrice Camy , Xavier Mateos","doi":"10.1016/j.materresbull.2025.113451","DOIUrl":null,"url":null,"abstract":"<div><div>Yb<sup>3+</sup>-doped magnesium monomolybdate crystal (Yb:MgMoO<sub>4</sub>) is grown by the Czochralski method. The crystal structure, thermal expansion, vibronic properties, polarized room- and low-temperature spectroscopy of this new compound were studied. According to the Rietveld refinement, Yb:MgMoO<sub>4</sub> belongs to the monoclinic class (sp. gr. <em>C</em>2/<em>m</em>, lattice constants: <em>a</em> = 10.276(9)Å, <em>b</em> = 9.289(6)Å, <em>c</em> = 7.027(6)Å and <em>β</em> = 106.903(8)°). The highest-energy Raman mode of Yb:MgMoO<sub>4</sub> is found at 969 cm<sup>-1</sup> and assigned to symmetric stretching vibrations of [MoO<sub>4</sub>]<sup>2-</sup> tetrahedra. Yb<sup>3+</sup> ions in MgMoO<sub>4</sub> exhibit intense and broad absorption at 978 nm, relatively broad and smooth emission bands above 1 μm (stimulated-emission cross-section: <em>σ</em><sub>SE</sub> = 0.76 × 10<sup>–20</sup> cm<sup>2</sup> at 1031 nm for light polarization <strong><em>E</em></strong> || <strong><em>c</em></strong>) and a long luminescence lifetime (0.63 ms). The low-temperature (12 K) spectroscopic studies evidenced a multi-site behavior for Yb<sup>3+</sup> ions in MgMoO<sub>4</sub> revealing at least 8 non-equivalent optical centers which are assigned to different charge compensation mechanisms. This induces a strong inhomogeneous spectral line broadening. For envisioned laser applications, the problem of low Yb<sup>3+</sup> segregation coefficient (<em>K</em><sub>Yb</sub> ∼0.029) needs to be solved.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"189 ","pages":"Article 113451"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopy of Yb3+ ions in multisite MgMoO4 crystal\",\"authors\":\"Ghassen Zin Elabedine , Yana S. Didenko , Pavel Loiko , Kirill A. Subbotin , Anatolii I. Titov , Liudmila D. Iskhakova , Denis A. Lis , Sergei K. Pavlov , Yulia I. Zimina , Kristina V. Kuleshova , Rosa Maria Solé , Magdalena Aguiló , Francesc Díaz , Patrice Camy , Xavier Mateos\",\"doi\":\"10.1016/j.materresbull.2025.113451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Yb<sup>3+</sup>-doped magnesium monomolybdate crystal (Yb:MgMoO<sub>4</sub>) is grown by the Czochralski method. The crystal structure, thermal expansion, vibronic properties, polarized room- and low-temperature spectroscopy of this new compound were studied. According to the Rietveld refinement, Yb:MgMoO<sub>4</sub> belongs to the monoclinic class (sp. gr. <em>C</em>2/<em>m</em>, lattice constants: <em>a</em> = 10.276(9)Å, <em>b</em> = 9.289(6)Å, <em>c</em> = 7.027(6)Å and <em>β</em> = 106.903(8)°). The highest-energy Raman mode of Yb:MgMoO<sub>4</sub> is found at 969 cm<sup>-1</sup> and assigned to symmetric stretching vibrations of [MoO<sub>4</sub>]<sup>2-</sup> tetrahedra. Yb<sup>3+</sup> ions in MgMoO<sub>4</sub> exhibit intense and broad absorption at 978 nm, relatively broad and smooth emission bands above 1 μm (stimulated-emission cross-section: <em>σ</em><sub>SE</sub> = 0.76 × 10<sup>–20</sup> cm<sup>2</sup> at 1031 nm for light polarization <strong><em>E</em></strong> || <strong><em>c</em></strong>) and a long luminescence lifetime (0.63 ms). The low-temperature (12 K) spectroscopic studies evidenced a multi-site behavior for Yb<sup>3+</sup> ions in MgMoO<sub>4</sub> revealing at least 8 non-equivalent optical centers which are assigned to different charge compensation mechanisms. This induces a strong inhomogeneous spectral line broadening. For envisioned laser applications, the problem of low Yb<sup>3+</sup> segregation coefficient (<em>K</em><sub>Yb</sub> ∼0.029) needs to be solved.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"189 \",\"pages\":\"Article 113451\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002554082500159X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002554082500159X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
采用Czochralski法生长掺杂Yb3+的单钼酸镁晶体(Yb:MgMoO4)。研究了该化合物的晶体结构、热膨胀、振动特性、极化室内光谱和低温光谱。根据Rietveld细化,Yb:MgMoO4属于单斜晶类(sp. gr. C2/m),晶格常数:a = 10.276(9)Å, b = 9.289(6)Å, c = 7.027(6)Å, β = 106.903(8)°)。在969 cm-1处发现了Yb:MgMoO4的最高能量拉曼模式,并将其分配给[MoO4]2-四面体的对称拉伸振动。MgMoO4中的Yb3+离子在978 nm处具有强而宽的吸收,在1 μm以上具有较宽且光滑的发射带(1031 nm处的激发发射截面:σSE = 0.76 × 10-20 cm2,光极化为E || c)和较长的发光寿命(0.63 ms)。低温(12 K)光谱研究证明了Yb3+离子在MgMoO4中的多位点行为,揭示了至少8个分配给不同电荷补偿机制的非等效光学中心。这引起强烈的非均匀谱线展宽。对于预期的激光应用,需要解决低Yb3+偏析系数(KYb ~ 0.029)的问题。
Spectroscopy of Yb3+ ions in multisite MgMoO4 crystal
Yb3+-doped magnesium monomolybdate crystal (Yb:MgMoO4) is grown by the Czochralski method. The crystal structure, thermal expansion, vibronic properties, polarized room- and low-temperature spectroscopy of this new compound were studied. According to the Rietveld refinement, Yb:MgMoO4 belongs to the monoclinic class (sp. gr. C2/m, lattice constants: a = 10.276(9)Å, b = 9.289(6)Å, c = 7.027(6)Å and β = 106.903(8)°). The highest-energy Raman mode of Yb:MgMoO4 is found at 969 cm-1 and assigned to symmetric stretching vibrations of [MoO4]2- tetrahedra. Yb3+ ions in MgMoO4 exhibit intense and broad absorption at 978 nm, relatively broad and smooth emission bands above 1 μm (stimulated-emission cross-section: σSE = 0.76 × 10–20 cm2 at 1031 nm for light polarization E || c) and a long luminescence lifetime (0.63 ms). The low-temperature (12 K) spectroscopic studies evidenced a multi-site behavior for Yb3+ ions in MgMoO4 revealing at least 8 non-equivalent optical centers which are assigned to different charge compensation mechanisms. This induces a strong inhomogeneous spectral line broadening. For envisioned laser applications, the problem of low Yb3+ segregation coefficient (KYb ∼0.029) needs to be solved.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.