{"title":"二方图的二方结合数、k 因子和谱半径","authors":"Yifang Hao , Shuchao Li , Yuantian Yu","doi":"10.1016/j.disc.2025.114511","DOIUrl":null,"url":null,"abstract":"<div><div>The binding number <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is the minimum value of <span><math><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>/</mo><mo>|</mo><mi>S</mi><mo>|</mo></math></span> taken over all non-empty subsets <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> such that <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>≠</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The bipartite binding number <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a bipartite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is defined to be <span><math><mi>min</mi><mo></mo><mo>{</mo><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo><mo>}</mo></math></span> if <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo></mrow></msub></math></span> and<span><span><span><math><mi>min</mi><mo></mo><mrow><mo>{</mo><munder><mi>min</mi><mrow><mtable><mtr><mtd><mo>∅</mo><mo>≠</mo><mi>S</mi><mo>⊆</mo><mi>X</mi></mtd></mtr><mtr><mtd><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>⊊</mo><mi>Y</mi></mtd></mtr></mtable></mrow></munder><mo></mo><mfrac><mrow><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></mfrac><mo>,</mo><mspace></mspace><munder><mi>min</mi><mrow><mtable><mtr><mtd><mo>∅</mo><mo>≠</mo><mi>T</mi><mo>⊆</mo><mi>Y</mi></mtd></mtr><mtr><mtd><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>⊊</mo><mi>X</mi></mtd></mtr></mtable></mrow></munder><mo></mo><mfrac><mrow><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>|</mo></mrow><mrow><mo>|</mo><mi>T</mi><mo>|</mo></mrow></mfrac><mo>}</mo></mrow></math></span></span></span> otherwise. Fan and Lin <span><span>[9]</span></span> investigated <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> from spectral perspectives, and provided tight sufficient conditions in terms of the spectral radius of a graph <em>G</em> to guarantee <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>r</mi></math></span>, where <em>r</em> is a positive integer. The study of the existence of <em>k</em>-factors in graphs is a classic problem in graph theory. Fan and Lin <span><span>[9]</span></span> also provided the spectral radius conditions for 1-binding graphs to contain a perfect matching and a 2-factor, respectively. In this paper, we consider the bipartite analogues of those results obtained in <span><span>[9]</span></span>. For a balanced bipartite graph <em>G</em>, we first provide two sufficient conditions to guarantee that <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>r</mi></math></span> for a positive integer <em>r</em>, in which one is based on the size, the other is based on the spectral radius of <em>G</em>. Then we establish two sufficient conditions for the balanced bipartite graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>k</mi></math></span> to admit a <em>k</em>-factor via the size and spectral radius of <em>G</em>, respectively. Related problems are also proposed for potential future work.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114511"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite binding number, k-factor and spectral radius of bipartite graphs\",\"authors\":\"Yifang Hao , Shuchao Li , Yuantian Yu\",\"doi\":\"10.1016/j.disc.2025.114511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The binding number <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is the minimum value of <span><math><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>/</mo><mo>|</mo><mi>S</mi><mo>|</mo></math></span> taken over all non-empty subsets <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> such that <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>≠</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The bipartite binding number <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a bipartite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is defined to be <span><math><mi>min</mi><mo></mo><mo>{</mo><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo><mo>}</mo></math></span> if <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo></mrow></msub></math></span> and<span><span><span><math><mi>min</mi><mo></mo><mrow><mo>{</mo><munder><mi>min</mi><mrow><mtable><mtr><mtd><mo>∅</mo><mo>≠</mo><mi>S</mi><mo>⊆</mo><mi>X</mi></mtd></mtr><mtr><mtd><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>⊊</mo><mi>Y</mi></mtd></mtr></mtable></mrow></munder><mo></mo><mfrac><mrow><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></mfrac><mo>,</mo><mspace></mspace><munder><mi>min</mi><mrow><mtable><mtr><mtd><mo>∅</mo><mo>≠</mo><mi>T</mi><mo>⊆</mo><mi>Y</mi></mtd></mtr><mtr><mtd><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>⊊</mo><mi>X</mi></mtd></mtr></mtable></mrow></munder><mo></mo><mfrac><mrow><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>|</mo></mrow><mrow><mo>|</mo><mi>T</mi><mo>|</mo></mrow></mfrac><mo>}</mo></mrow></math></span></span></span> otherwise. Fan and Lin <span><span>[9]</span></span> investigated <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> from spectral perspectives, and provided tight sufficient conditions in terms of the spectral radius of a graph <em>G</em> to guarantee <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>r</mi></math></span>, where <em>r</em> is a positive integer. The study of the existence of <em>k</em>-factors in graphs is a classic problem in graph theory. Fan and Lin <span><span>[9]</span></span> also provided the spectral radius conditions for 1-binding graphs to contain a perfect matching and a 2-factor, respectively. In this paper, we consider the bipartite analogues of those results obtained in <span><span>[9]</span></span>. For a balanced bipartite graph <em>G</em>, we first provide two sufficient conditions to guarantee that <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>r</mi></math></span> for a positive integer <em>r</em>, in which one is based on the size, the other is based on the spectral radius of <em>G</em>. Then we establish two sufficient conditions for the balanced bipartite graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>k</mi></math></span> to admit a <em>k</em>-factor via the size and spectral radius of <em>G</em>, respectively. Related problems are also proposed for potential future work.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 8\",\"pages\":\"Article 114511\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001190\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001190","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bipartite binding number, k-factor and spectral radius of bipartite graphs
The binding number of a graph G is the minimum value of taken over all non-empty subsets S of such that . The bipartite binding number of a bipartite graph is defined to be if and otherwise. Fan and Lin [9] investigated from spectral perspectives, and provided tight sufficient conditions in terms of the spectral radius of a graph G to guarantee , where r is a positive integer. The study of the existence of k-factors in graphs is a classic problem in graph theory. Fan and Lin [9] also provided the spectral radius conditions for 1-binding graphs to contain a perfect matching and a 2-factor, respectively. In this paper, we consider the bipartite analogues of those results obtained in [9]. For a balanced bipartite graph G, we first provide two sufficient conditions to guarantee that for a positive integer r, in which one is based on the size, the other is based on the spectral radius of G. Then we establish two sufficient conditions for the balanced bipartite graph G with to admit a k-factor via the size and spectral radius of G, respectively. Related problems are also proposed for potential future work.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.