Ahmed Metawea , Ahmad B. Albadarin , Ozren Jovic , Nicolas Abdel Karim Aramouni , Gavin Walker , Rabah Mouras
{"title":"拉曼光谱和化学计量学在使用双螺杆挤压法机械化学合成 TIFSIX-3-Ni HUMs 中的应用","authors":"Ahmed Metawea , Ahmad B. Albadarin , Ozren Jovic , Nicolas Abdel Karim Aramouni , Gavin Walker , Rabah Mouras","doi":"10.1016/j.micromeso.2025.113558","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid ultra-microporous materials (HUMs) are a novel category of porous materials featuring a distinctive 3D structure composed of square lattice layers. In this study, HUMs was produced on a small scale using either solvothermal or ball milling synthesis methods. Building on the successful synthesis of HUMs via ball milling, twin-screw extrusion (TSE) appears to be a suitable method for large-scale and potentially continuous synthesis. The effect of process parameters, such as feeding rate, screw speed, barrel temperature, and liquid-to-solid ratio L/S (m/m), on the properties of the TIFSIX-3-Ni HUM was investigated. The results are presented in two sections: In the first section, we conducted a characterization and qualitative investigation to determine the crystallinity of the collected powder by analysing PXRD diffractograms. The second section involves a quantitative study using partial least squares (PLS) multi-variate analysis to measure the conversion rate of the HUM acquired. This was achieved by utilizing the most effective developed calibration model. The PXRD analysis revealed that the most favourable parameters for producing the HUM involve operating at 50 and 150 RPM, at L/S of 0.5 (m/v), and manually feeding. The highest yield of inactivated TIFSIX-3-Ni was 77.7 %, achieved using Raman spectroscopy combined with the PLS model for quantitative analysis This study marks the first successful continuous synthesis of HUMs and the development of a predictive model for process optimization.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"391 ","pages":"Article 113558"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Raman spectroscopy and chemometrics in the mechanochemical synthesis of TIFSIX-3-Ni HUMs using twin screw extrusion\",\"authors\":\"Ahmed Metawea , Ahmad B. Albadarin , Ozren Jovic , Nicolas Abdel Karim Aramouni , Gavin Walker , Rabah Mouras\",\"doi\":\"10.1016/j.micromeso.2025.113558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hybrid ultra-microporous materials (HUMs) are a novel category of porous materials featuring a distinctive 3D structure composed of square lattice layers. In this study, HUMs was produced on a small scale using either solvothermal or ball milling synthesis methods. Building on the successful synthesis of HUMs via ball milling, twin-screw extrusion (TSE) appears to be a suitable method for large-scale and potentially continuous synthesis. The effect of process parameters, such as feeding rate, screw speed, barrel temperature, and liquid-to-solid ratio L/S (m/m), on the properties of the TIFSIX-3-Ni HUM was investigated. The results are presented in two sections: In the first section, we conducted a characterization and qualitative investigation to determine the crystallinity of the collected powder by analysing PXRD diffractograms. The second section involves a quantitative study using partial least squares (PLS) multi-variate analysis to measure the conversion rate of the HUM acquired. This was achieved by utilizing the most effective developed calibration model. The PXRD analysis revealed that the most favourable parameters for producing the HUM involve operating at 50 and 150 RPM, at L/S of 0.5 (m/v), and manually feeding. The highest yield of inactivated TIFSIX-3-Ni was 77.7 %, achieved using Raman spectroscopy combined with the PLS model for quantitative analysis This study marks the first successful continuous synthesis of HUMs and the development of a predictive model for process optimization.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"391 \",\"pages\":\"Article 113558\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181125000721\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125000721","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Application of Raman spectroscopy and chemometrics in the mechanochemical synthesis of TIFSIX-3-Ni HUMs using twin screw extrusion
Hybrid ultra-microporous materials (HUMs) are a novel category of porous materials featuring a distinctive 3D structure composed of square lattice layers. In this study, HUMs was produced on a small scale using either solvothermal or ball milling synthesis methods. Building on the successful synthesis of HUMs via ball milling, twin-screw extrusion (TSE) appears to be a suitable method for large-scale and potentially continuous synthesis. The effect of process parameters, such as feeding rate, screw speed, barrel temperature, and liquid-to-solid ratio L/S (m/m), on the properties of the TIFSIX-3-Ni HUM was investigated. The results are presented in two sections: In the first section, we conducted a characterization and qualitative investigation to determine the crystallinity of the collected powder by analysing PXRD diffractograms. The second section involves a quantitative study using partial least squares (PLS) multi-variate analysis to measure the conversion rate of the HUM acquired. This was achieved by utilizing the most effective developed calibration model. The PXRD analysis revealed that the most favourable parameters for producing the HUM involve operating at 50 and 150 RPM, at L/S of 0.5 (m/v), and manually feeding. The highest yield of inactivated TIFSIX-3-Ni was 77.7 %, achieved using Raman spectroscopy combined with the PLS model for quantitative analysis This study marks the first successful continuous synthesis of HUMs and the development of a predictive model for process optimization.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.