Yu-Ling Li , Po-Ya Chang , Ting-Wu Chuang , Yi-Chen Hsieh , Bo-Sian Wang , Szu-Ying Chen , Hung-Yi Chiou
{"title":"长期臭氧暴露与高血压、糖尿病和慢性肾脏疾病的发病率和进展的关系:一项全国回顾性队列研究","authors":"Yu-Ling Li , Po-Ya Chang , Ting-Wu Chuang , Yi-Chen Hsieh , Bo-Sian Wang , Szu-Ying Chen , Hung-Yi Chiou","doi":"10.1016/j.scitotenv.2025.179209","DOIUrl":null,"url":null,"abstract":"<div><div>Evidence suggests that ozone is associated with an increased risk of hypertension, diabetes, or chronic kidney disease (CKD). However, the associations of ozone exposure with the dynamic progression of these diseases among Asian population remain unknown.</div><div>This study included 9,256,945 participants from Taiwan's National Health Insurance Research Database between 2006 and 2021. Multimorbidity was defined as the coexistence of CKD and either hypertension or diabetes. The ordinary kriging method was used to estimate daily concentrations of ozone, sulfur dioxide, carbon monoxide, nitrogen dioxide, suspended fine particles, and suspended particles. Then, five-year average concentrations of pollutants were calculated. We performed multi-state survival models to analyze the association between ozone and dynamic progression of these diseases.</div><div>During follow-up, 3,555,498 participants experienced hypertension, diabetes, or CKD; 656,515 experienced multimorbidity; and 792,555 died. Ozone exposure was significantly associated with incidence of the results in all transitions. The hazard ratios of each IQR (3.57 ppb) increment in ozone for the transition to incident disease were 1.016 [95 % confidence interval (CI): 1.014, 1.017], for the transition to death were 1.04 [95 % CI: 1.036, 1.043], for the transition to multimorbidity were 1.015 [95 % CI: 1.012, 1.017]. Furthermore, with each IQR increase of ozone, the hazard ratios for transition from the disease incidence to death and from multimorbidity to death were 1.03 [95 % CI: 1.026, 1.033] and 1.007 [95 % CI: 1.002, 1.013], respectively.</div><div>Our results suggest long-term exposure to ozone might be an important determinant for the incidence and dynamic progression of hypertension, diabetes, and CKD in Taiwan.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"975 ","pages":"Article 179209"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of long-term ozone exposure with the incidence and progression of hypertension, diabetes, and chronic kidney disease: A national retrospective cohort study\",\"authors\":\"Yu-Ling Li , Po-Ya Chang , Ting-Wu Chuang , Yi-Chen Hsieh , Bo-Sian Wang , Szu-Ying Chen , Hung-Yi Chiou\",\"doi\":\"10.1016/j.scitotenv.2025.179209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Evidence suggests that ozone is associated with an increased risk of hypertension, diabetes, or chronic kidney disease (CKD). However, the associations of ozone exposure with the dynamic progression of these diseases among Asian population remain unknown.</div><div>This study included 9,256,945 participants from Taiwan's National Health Insurance Research Database between 2006 and 2021. Multimorbidity was defined as the coexistence of CKD and either hypertension or diabetes. The ordinary kriging method was used to estimate daily concentrations of ozone, sulfur dioxide, carbon monoxide, nitrogen dioxide, suspended fine particles, and suspended particles. Then, five-year average concentrations of pollutants were calculated. We performed multi-state survival models to analyze the association between ozone and dynamic progression of these diseases.</div><div>During follow-up, 3,555,498 participants experienced hypertension, diabetes, or CKD; 656,515 experienced multimorbidity; and 792,555 died. Ozone exposure was significantly associated with incidence of the results in all transitions. The hazard ratios of each IQR (3.57 ppb) increment in ozone for the transition to incident disease were 1.016 [95 % confidence interval (CI): 1.014, 1.017], for the transition to death were 1.04 [95 % CI: 1.036, 1.043], for the transition to multimorbidity were 1.015 [95 % CI: 1.012, 1.017]. Furthermore, with each IQR increase of ozone, the hazard ratios for transition from the disease incidence to death and from multimorbidity to death were 1.03 [95 % CI: 1.026, 1.033] and 1.007 [95 % CI: 1.002, 1.013], respectively.</div><div>Our results suggest long-term exposure to ozone might be an important determinant for the incidence and dynamic progression of hypertension, diabetes, and CKD in Taiwan.</div></div>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"975 \",\"pages\":\"Article 179209\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969725008447\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725008447","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Association of long-term ozone exposure with the incidence and progression of hypertension, diabetes, and chronic kidney disease: A national retrospective cohort study
Evidence suggests that ozone is associated with an increased risk of hypertension, diabetes, or chronic kidney disease (CKD). However, the associations of ozone exposure with the dynamic progression of these diseases among Asian population remain unknown.
This study included 9,256,945 participants from Taiwan's National Health Insurance Research Database between 2006 and 2021. Multimorbidity was defined as the coexistence of CKD and either hypertension or diabetes. The ordinary kriging method was used to estimate daily concentrations of ozone, sulfur dioxide, carbon monoxide, nitrogen dioxide, suspended fine particles, and suspended particles. Then, five-year average concentrations of pollutants were calculated. We performed multi-state survival models to analyze the association between ozone and dynamic progression of these diseases.
During follow-up, 3,555,498 participants experienced hypertension, diabetes, or CKD; 656,515 experienced multimorbidity; and 792,555 died. Ozone exposure was significantly associated with incidence of the results in all transitions. The hazard ratios of each IQR (3.57 ppb) increment in ozone for the transition to incident disease were 1.016 [95 % confidence interval (CI): 1.014, 1.017], for the transition to death were 1.04 [95 % CI: 1.036, 1.043], for the transition to multimorbidity were 1.015 [95 % CI: 1.012, 1.017]. Furthermore, with each IQR increase of ozone, the hazard ratios for transition from the disease incidence to death and from multimorbidity to death were 1.03 [95 % CI: 1.026, 1.033] and 1.007 [95 % CI: 1.002, 1.013], respectively.
Our results suggest long-term exposure to ozone might be an important determinant for the incidence and dynamic progression of hypertension, diabetes, and CKD in Taiwan.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.