广义周期性定理

IF 0.7 2区 数学 Q2 MATHEMATICS
Leonid Positselski
{"title":"广义周期性定理","authors":"Leonid Positselski","doi":"10.1016/j.jpaa.2025.107962","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a ring and <span><math><mi>S</mi></math></span> be a class of strongly finitely presented (<span><math><msub><mrow><mi>FP</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>) <em>R</em>-modules closed under extensions, direct summands, and syzygies. Let <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> be the (hereditary complete) cotorsion pair generated by <span><math><mi>S</mi></math></span> in <span><math><mi>Mod--</mi><mspace></mspace><mi>R</mi></math></span>, and let <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> be the (also hereditary complete) cotorsion pair in which <span><math><mi>C</mi><mo>=</mo><munder><mi>lim</mi><mo>→</mo></munder><mi>A</mi><mo>=</mo><munder><mi>lim</mi><mo>→</mo></munder><mi>S</mi></math></span>. We show that any <span><math><mi>A</mi></math></span>-periodic module in <span><math><mi>C</mi></math></span> belongs to <span><math><mi>A</mi></math></span>, and any <span><math><mi>D</mi></math></span>-periodic module in <span><math><mi>B</mi></math></span> belongs to <span><math><mi>D</mi></math></span>. Further generalizations of both results are obtained, so that we get a common generalization of the flat/projective and fp-projective periodicity theorems, as well as a common generalization of the fp-injective/injective and cotorsion periodicity theorems. Both are applicable to modules over an arbitrary ring, and in fact, to Grothendieck categories.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107962"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized periodicity theorems\",\"authors\":\"Leonid Positselski\",\"doi\":\"10.1016/j.jpaa.2025.107962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be a ring and <span><math><mi>S</mi></math></span> be a class of strongly finitely presented (<span><math><msub><mrow><mi>FP</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>) <em>R</em>-modules closed under extensions, direct summands, and syzygies. Let <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> be the (hereditary complete) cotorsion pair generated by <span><math><mi>S</mi></math></span> in <span><math><mi>Mod--</mi><mspace></mspace><mi>R</mi></math></span>, and let <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> be the (also hereditary complete) cotorsion pair in which <span><math><mi>C</mi><mo>=</mo><munder><mi>lim</mi><mo>→</mo></munder><mi>A</mi><mo>=</mo><munder><mi>lim</mi><mo>→</mo></munder><mi>S</mi></math></span>. We show that any <span><math><mi>A</mi></math></span>-periodic module in <span><math><mi>C</mi></math></span> belongs to <span><math><mi>A</mi></math></span>, and any <span><math><mi>D</mi></math></span>-periodic module in <span><math><mi>B</mi></math></span> belongs to <span><math><mi>D</mi></math></span>. Further generalizations of both results are obtained, so that we get a common generalization of the flat/projective and fp-projective periodicity theorems, as well as a common generalization of the fp-injective/injective and cotorsion periodicity theorems. Both are applicable to modules over an arbitrary ring, and in fact, to Grothendieck categories.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 7\",\"pages\":\"Article 107962\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240492500101X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492500101X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个环,S是一类强有限表示的(FP∞)R模,闭于扩展、直接和和和合下。设(A,B)为S在Mod—R中生成的(遗传完全)扭转对,设(C,D)为C=lim→A=lim→S的(同样是遗传完全)扭转对。我们证明了C中的任何A周期模都属于A, B中的任何d周期模都属于d。我们进一步推广了这两个结果,从而得到了平面/射影和fp-射影周期定理的一个共同推广,以及fp-内射/内射和旋回周期定理的一个共同推广。两者都适用于任意环上的模,实际上也适用于Grothendieck范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized periodicity theorems
Let R be a ring and S be a class of strongly finitely presented (FP) R-modules closed under extensions, direct summands, and syzygies. Let (A,B) be the (hereditary complete) cotorsion pair generated by S in Mod--R, and let (C,D) be the (also hereditary complete) cotorsion pair in which C=limA=limS. We show that any A-periodic module in C belongs to A, and any D-periodic module in B belongs to D. Further generalizations of both results are obtained, so that we get a common generalization of the flat/projective and fp-projective periodicity theorems, as well as a common generalization of the fp-injective/injective and cotorsion periodicity theorems. Both are applicable to modules over an arbitrary ring, and in fact, to Grothendieck categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信