{"title":"广义周期性定理","authors":"Leonid Positselski","doi":"10.1016/j.jpaa.2025.107962","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a ring and <span><math><mi>S</mi></math></span> be a class of strongly finitely presented (<span><math><msub><mrow><mi>FP</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>) <em>R</em>-modules closed under extensions, direct summands, and syzygies. Let <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> be the (hereditary complete) cotorsion pair generated by <span><math><mi>S</mi></math></span> in <span><math><mi>Mod--</mi><mspace></mspace><mi>R</mi></math></span>, and let <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> be the (also hereditary complete) cotorsion pair in which <span><math><mi>C</mi><mo>=</mo><munder><mi>lim</mi><mo>→</mo></munder><mi>A</mi><mo>=</mo><munder><mi>lim</mi><mo>→</mo></munder><mi>S</mi></math></span>. We show that any <span><math><mi>A</mi></math></span>-periodic module in <span><math><mi>C</mi></math></span> belongs to <span><math><mi>A</mi></math></span>, and any <span><math><mi>D</mi></math></span>-periodic module in <span><math><mi>B</mi></math></span> belongs to <span><math><mi>D</mi></math></span>. Further generalizations of both results are obtained, so that we get a common generalization of the flat/projective and fp-projective periodicity theorems, as well as a common generalization of the fp-injective/injective and cotorsion periodicity theorems. Both are applicable to modules over an arbitrary ring, and in fact, to Grothendieck categories.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107962"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized periodicity theorems\",\"authors\":\"Leonid Positselski\",\"doi\":\"10.1016/j.jpaa.2025.107962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be a ring and <span><math><mi>S</mi></math></span> be a class of strongly finitely presented (<span><math><msub><mrow><mi>FP</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>) <em>R</em>-modules closed under extensions, direct summands, and syzygies. Let <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> be the (hereditary complete) cotorsion pair generated by <span><math><mi>S</mi></math></span> in <span><math><mi>Mod--</mi><mspace></mspace><mi>R</mi></math></span>, and let <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> be the (also hereditary complete) cotorsion pair in which <span><math><mi>C</mi><mo>=</mo><munder><mi>lim</mi><mo>→</mo></munder><mi>A</mi><mo>=</mo><munder><mi>lim</mi><mo>→</mo></munder><mi>S</mi></math></span>. We show that any <span><math><mi>A</mi></math></span>-periodic module in <span><math><mi>C</mi></math></span> belongs to <span><math><mi>A</mi></math></span>, and any <span><math><mi>D</mi></math></span>-periodic module in <span><math><mi>B</mi></math></span> belongs to <span><math><mi>D</mi></math></span>. Further generalizations of both results are obtained, so that we get a common generalization of the flat/projective and fp-projective periodicity theorems, as well as a common generalization of the fp-injective/injective and cotorsion periodicity theorems. Both are applicable to modules over an arbitrary ring, and in fact, to Grothendieck categories.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 7\",\"pages\":\"Article 107962\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240492500101X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492500101X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let R be a ring and be a class of strongly finitely presented () R-modules closed under extensions, direct summands, and syzygies. Let be the (hereditary complete) cotorsion pair generated by in , and let be the (also hereditary complete) cotorsion pair in which . We show that any -periodic module in belongs to , and any -periodic module in belongs to . Further generalizations of both results are obtained, so that we get a common generalization of the flat/projective and fp-projective periodicity theorems, as well as a common generalization of the fp-injective/injective and cotorsion periodicity theorems. Both are applicable to modules over an arbitrary ring, and in fact, to Grothendieck categories.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.