{"title":"循环单剪作用下再固结对砂土再液化行为的影响:三维离散元视角","authors":"Wentian Xia , Zhijian Qiu , Junjie Zheng , Yewei Zheng , Qixin Wu","doi":"10.1016/j.soildyn.2025.109415","DOIUrl":null,"url":null,"abstract":"<div><div>In practical engineering, earthquake-induced liquefaction can occur more than once in sandy soils. The existence of low-permeable soil layers, such as clay and silty layers in situ, may hinder the dissipation of excess pore pressure within sand (or reconsolidation) after the occurrence of liquefaction due to the mainshock and therefore weaken the reliquefaction resistance of sand under an aftershock. To gain more mesomechanical insights into the reduced reliquefaction resistance of the reconsolidated sand under aftershock, a series of discrete element simulations of undrained cyclic simple shear tests were carried out on granular specimens with different degrees of reconsolidation. During both the first (mainshock) and second (aftershock) cyclic shearing processes, the evolution of the load-bearing structure of the granular specimens was quantified through a contact-normal-based fabric tensor. The interplay between mesoscopic structure evolutions and external loadings can well explain the decrease in reliquefaction resistance during an aftershock.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"195 ","pages":"Article 109415"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of reconsolidation on the reliquefaction behavior of sand under cyclic simple shear: A 3D discrete element perspective\",\"authors\":\"Wentian Xia , Zhijian Qiu , Junjie Zheng , Yewei Zheng , Qixin Wu\",\"doi\":\"10.1016/j.soildyn.2025.109415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In practical engineering, earthquake-induced liquefaction can occur more than once in sandy soils. The existence of low-permeable soil layers, such as clay and silty layers in situ, may hinder the dissipation of excess pore pressure within sand (or reconsolidation) after the occurrence of liquefaction due to the mainshock and therefore weaken the reliquefaction resistance of sand under an aftershock. To gain more mesomechanical insights into the reduced reliquefaction resistance of the reconsolidated sand under aftershock, a series of discrete element simulations of undrained cyclic simple shear tests were carried out on granular specimens with different degrees of reconsolidation. During both the first (mainshock) and second (aftershock) cyclic shearing processes, the evolution of the load-bearing structure of the granular specimens was quantified through a contact-normal-based fabric tensor. The interplay between mesoscopic structure evolutions and external loadings can well explain the decrease in reliquefaction resistance during an aftershock.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"195 \",\"pages\":\"Article 109415\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726125002088\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125002088","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Influence of reconsolidation on the reliquefaction behavior of sand under cyclic simple shear: A 3D discrete element perspective
In practical engineering, earthquake-induced liquefaction can occur more than once in sandy soils. The existence of low-permeable soil layers, such as clay and silty layers in situ, may hinder the dissipation of excess pore pressure within sand (or reconsolidation) after the occurrence of liquefaction due to the mainshock and therefore weaken the reliquefaction resistance of sand under an aftershock. To gain more mesomechanical insights into the reduced reliquefaction resistance of the reconsolidated sand under aftershock, a series of discrete element simulations of undrained cyclic simple shear tests were carried out on granular specimens with different degrees of reconsolidation. During both the first (mainshock) and second (aftershock) cyclic shearing processes, the evolution of the load-bearing structure of the granular specimens was quantified through a contact-normal-based fabric tensor. The interplay between mesoscopic structure evolutions and external loadings can well explain the decrease in reliquefaction resistance during an aftershock.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.