混合基质膜原位合成ZIF-8凝胶网络增强CO2/N2分离

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Xiaoting Feng , Chenlu Liu , Kunkun Ren , Xinglei Zhao , Longjie Liu , Keming Zhang , Xiaohe Tian , Qingnan Wang , Xiangyu Liu , Yueyangchao Yu , Tianhe Gu , Shaofei Wang
{"title":"混合基质膜原位合成ZIF-8凝胶网络增强CO2/N2分离","authors":"Xiaoting Feng ,&nbsp;Chenlu Liu ,&nbsp;Kunkun Ren ,&nbsp;Xinglei Zhao ,&nbsp;Longjie Liu ,&nbsp;Keming Zhang ,&nbsp;Xiaohe Tian ,&nbsp;Qingnan Wang ,&nbsp;Xiangyu Liu ,&nbsp;Yueyangchao Yu ,&nbsp;Tianhe Gu ,&nbsp;Shaofei Wang","doi":"10.1016/j.ces.2025.121610","DOIUrl":null,"url":null,"abstract":"<div><div>The urgent need for efficient CO<sub>2</sub> capture technologies to mitigate climate change has driven the advancement of membrane-based separation systems. We report a mixed matrix membrane design through the in-situ growth of a ZIF-8 gel network within a Pebax-1657 matrix. By tuning the solvent ratio and concentration of modulator, ZIF-8 gel rather than particles are formed within the polymer, establishing a three-dimensional interconnected MOF network that ensures homogeneous filler dispersion and creates continuous gas transport nanochannels. The optimized membrane achieves a remarkable CO<sub>2</sub> permeability of 183.9 Barrer and a CO<sub>2</sub>/N<sub>2</sub> selectivity of 73.3, surpassing the 2008 Robeson upper bound. These values represent 190.4 % and 34.9 % enhancements in permeability and selectivity, compared to the pristine polymer. The membrane also demonstrates robust operational stability and maintains &gt; 95 % of its initial performance over 60 days. This work offers a promising solution to creating continuous channels in CO<sub>2</sub> separation membranes.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"311 ","pages":"Article 121610"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ synthesis of ZIF-8 gel network in mixed matrix membranes for enhanced CO2/N2 separations\",\"authors\":\"Xiaoting Feng ,&nbsp;Chenlu Liu ,&nbsp;Kunkun Ren ,&nbsp;Xinglei Zhao ,&nbsp;Longjie Liu ,&nbsp;Keming Zhang ,&nbsp;Xiaohe Tian ,&nbsp;Qingnan Wang ,&nbsp;Xiangyu Liu ,&nbsp;Yueyangchao Yu ,&nbsp;Tianhe Gu ,&nbsp;Shaofei Wang\",\"doi\":\"10.1016/j.ces.2025.121610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The urgent need for efficient CO<sub>2</sub> capture technologies to mitigate climate change has driven the advancement of membrane-based separation systems. We report a mixed matrix membrane design through the in-situ growth of a ZIF-8 gel network within a Pebax-1657 matrix. By tuning the solvent ratio and concentration of modulator, ZIF-8 gel rather than particles are formed within the polymer, establishing a three-dimensional interconnected MOF network that ensures homogeneous filler dispersion and creates continuous gas transport nanochannels. The optimized membrane achieves a remarkable CO<sub>2</sub> permeability of 183.9 Barrer and a CO<sub>2</sub>/N<sub>2</sub> selectivity of 73.3, surpassing the 2008 Robeson upper bound. These values represent 190.4 % and 34.9 % enhancements in permeability and selectivity, compared to the pristine polymer. The membrane also demonstrates robust operational stability and maintains &gt; 95 % of its initial performance over 60 days. This work offers a promising solution to creating continuous channels in CO<sub>2</sub> separation membranes.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"311 \",\"pages\":\"Article 121610\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250925004336\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925004336","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

迫切需要有效的二氧化碳捕获技术来缓解气候变化,这推动了膜分离系统的发展。通过在Pebax-1657基质中原位生长ZIF-8凝胶网络,我们报道了一种混合基质膜的设计。通过调整溶剂比例和调制剂的浓度,ZIF-8在聚合物内部形成凝胶而不是颗粒,建立一个三维互连的MOF网络,确保填料均匀分散,并创造连续的气体输送纳米通道。优化膜的CO2渗透率为183.9 Barrer, CO2/N2选择性为73.3,超过了2008年Robeson上限。与原始聚合物相比,这些值分别提高了190.4 %和34.9 %的渗透率和选择性。该膜还显示出强大的运行稳定性,并在60 天内保持 >; 95% %的初始性能。这项工作为在CO2分离膜中创建连续通道提供了一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-situ synthesis of ZIF-8 gel network in mixed matrix membranes for enhanced CO2/N2 separations

In-situ synthesis of ZIF-8 gel network in mixed matrix membranes for enhanced CO2/N2 separations

In-situ synthesis of ZIF-8 gel network in mixed matrix membranes for enhanced CO2/N2 separations
The urgent need for efficient CO2 capture technologies to mitigate climate change has driven the advancement of membrane-based separation systems. We report a mixed matrix membrane design through the in-situ growth of a ZIF-8 gel network within a Pebax-1657 matrix. By tuning the solvent ratio and concentration of modulator, ZIF-8 gel rather than particles are formed within the polymer, establishing a three-dimensional interconnected MOF network that ensures homogeneous filler dispersion and creates continuous gas transport nanochannels. The optimized membrane achieves a remarkable CO2 permeability of 183.9 Barrer and a CO2/N2 selectivity of 73.3, surpassing the 2008 Robeson upper bound. These values represent 190.4 % and 34.9 % enhancements in permeability and selectivity, compared to the pristine polymer. The membrane also demonstrates robust operational stability and maintains > 95 % of its initial performance over 60 days. This work offers a promising solution to creating continuous channels in CO2 separation membranes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信