{"title":"巢湖单氟烷基和多氟烷基物质(PFAS)风险排序及实验验证:基于非目标和目标分析","authors":"Wei Chang, Shen-Dong Xu, Ting Liu, Lan-Lan Wu, Si-Ting Liu, Gang Liu, Jian Sun, Ye-Xin Luo, Lei Gao, Hao Li, Qi Lu, Zhi Yuan, Kaiyong Liu, Huan Zhou, Xu-Dong Zhang, Yichao Huang, Yong-Wei Xiong, Hua-Long Zhu, De-Xiang Xu, Hua Wang","doi":"10.1016/j.jhazmat.2025.138179","DOIUrl":null,"url":null,"abstract":"Pollution caused by per- and polyfluoroalkyl substances (PFAS) in surface water has become a global health concern. Nevertheless, due to the continuous production of emerging PFAS, the pollution levels and hazards of several precursors and their metabolites have not been evaluated. In this study, Chaohu Lake was selected as a representative freshwater lake to obtain a deeper understanding of the profiles of emerging PFAS in surface water. Nontarget screening tentatively identified 49 PFAS with a confidence level of ≥L3, which included 12 legacy PFAS and 37 emerging PFAS. Based on a target analysis of 57 PFAS, 18 PFAS were detected, with at least 10 PFAS detected in every water sample, indicating the widespread presence of PFAS in Chaohu Lake. Moreover, a risk-based PFAS priority model was used to prioritize the PFAS in Chaohu Lake. Remarkably, perfluoromethanesulfonic acid (PFMeS) exhibited the highest level of risk index among the intersection PFAS identified by the nontarget screening of Chaohu Lake water and human serum. For validation, the cytotoxicity of PFMeS was further evaluated <em>in vitro</em>. This study considerably expands our understanding of the occurrence, environmental risk, and cytotoxicity of PFAS in Chaohu Lake and also provides an experimentally validated basis for future research on novel contaminants in a water environment.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"81 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk prioritization and experimental validation of per- and polyfluoroalkyl substances (PFAS) in Chaohu Lake: based on nontarget and target analyses\",\"authors\":\"Wei Chang, Shen-Dong Xu, Ting Liu, Lan-Lan Wu, Si-Ting Liu, Gang Liu, Jian Sun, Ye-Xin Luo, Lei Gao, Hao Li, Qi Lu, Zhi Yuan, Kaiyong Liu, Huan Zhou, Xu-Dong Zhang, Yichao Huang, Yong-Wei Xiong, Hua-Long Zhu, De-Xiang Xu, Hua Wang\",\"doi\":\"10.1016/j.jhazmat.2025.138179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pollution caused by per- and polyfluoroalkyl substances (PFAS) in surface water has become a global health concern. Nevertheless, due to the continuous production of emerging PFAS, the pollution levels and hazards of several precursors and their metabolites have not been evaluated. In this study, Chaohu Lake was selected as a representative freshwater lake to obtain a deeper understanding of the profiles of emerging PFAS in surface water. Nontarget screening tentatively identified 49 PFAS with a confidence level of ≥L3, which included 12 legacy PFAS and 37 emerging PFAS. Based on a target analysis of 57 PFAS, 18 PFAS were detected, with at least 10 PFAS detected in every water sample, indicating the widespread presence of PFAS in Chaohu Lake. Moreover, a risk-based PFAS priority model was used to prioritize the PFAS in Chaohu Lake. Remarkably, perfluoromethanesulfonic acid (PFMeS) exhibited the highest level of risk index among the intersection PFAS identified by the nontarget screening of Chaohu Lake water and human serum. For validation, the cytotoxicity of PFMeS was further evaluated <em>in vitro</em>. This study considerably expands our understanding of the occurrence, environmental risk, and cytotoxicity of PFAS in Chaohu Lake and also provides an experimentally validated basis for future research on novel contaminants in a water environment.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.138179\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138179","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Risk prioritization and experimental validation of per- and polyfluoroalkyl substances (PFAS) in Chaohu Lake: based on nontarget and target analyses
Pollution caused by per- and polyfluoroalkyl substances (PFAS) in surface water has become a global health concern. Nevertheless, due to the continuous production of emerging PFAS, the pollution levels and hazards of several precursors and their metabolites have not been evaluated. In this study, Chaohu Lake was selected as a representative freshwater lake to obtain a deeper understanding of the profiles of emerging PFAS in surface water. Nontarget screening tentatively identified 49 PFAS with a confidence level of ≥L3, which included 12 legacy PFAS and 37 emerging PFAS. Based on a target analysis of 57 PFAS, 18 PFAS were detected, with at least 10 PFAS detected in every water sample, indicating the widespread presence of PFAS in Chaohu Lake. Moreover, a risk-based PFAS priority model was used to prioritize the PFAS in Chaohu Lake. Remarkably, perfluoromethanesulfonic acid (PFMeS) exhibited the highest level of risk index among the intersection PFAS identified by the nontarget screening of Chaohu Lake water and human serum. For validation, the cytotoxicity of PFMeS was further evaluated in vitro. This study considerably expands our understanding of the occurrence, environmental risk, and cytotoxicity of PFAS in Chaohu Lake and also provides an experimentally validated basis for future research on novel contaminants in a water environment.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.