Xiang Zhang, Mingfei Xu, Zhi Kai Ng, Robert Vajtai, Edwin Hang Tong Teo, Yuji Zhao, Pulickel M. Ajayan
{"title":"金刚石:合成的最新进展及其在电子学上的潜力","authors":"Xiang Zhang, Mingfei Xu, Zhi Kai Ng, Robert Vajtai, Edwin Hang Tong Teo, Yuji Zhao, Pulickel M. Ajayan","doi":"10.1021/acs.chemmater.5c00248","DOIUrl":null,"url":null,"abstract":"Diamond, with its extraordinary physical and electrical properties, has emerged as a transformative material for next-generation electronics. Its ultrawide bandgap, superior thermal conductivity, high carrier mobility, and excellent mechanical characteristics uniquely position it to address the limitations of traditional semiconductor materials. However, realizing the full potential of diamond in electronic applications requires overcoming significant challenges in its synthesis scalability, defect and dislocation control, and advanced device fabrication. In this Perspective, we discuss strategies and recent advancements in the synthesis of single-crystalline diamond in wafer scales as well as the reduction of defects and dislocations. The development of new diamond morphologies is also reviewed, underscoring their potential to modify properties and broaden application domains. Furthermore, we highlight the progress in engineering diamond-based electronic devices, particularly, field-effect transistors (FETs). Innovations in surface conductivity optimization and the realization of stable, normally off-device operation have enhanced the performance and reliability of diamond devices. Key areas for future research are proposed throughout, offering insights into the opportunities and challenges that remain in diamond synthesis and harnessing diamond’s full potential for next-generation electronic applications.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"16 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diamond: Recent Progress in Synthesis and Its Potential in Electronics\",\"authors\":\"Xiang Zhang, Mingfei Xu, Zhi Kai Ng, Robert Vajtai, Edwin Hang Tong Teo, Yuji Zhao, Pulickel M. Ajayan\",\"doi\":\"10.1021/acs.chemmater.5c00248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diamond, with its extraordinary physical and electrical properties, has emerged as a transformative material for next-generation electronics. Its ultrawide bandgap, superior thermal conductivity, high carrier mobility, and excellent mechanical characteristics uniquely position it to address the limitations of traditional semiconductor materials. However, realizing the full potential of diamond in electronic applications requires overcoming significant challenges in its synthesis scalability, defect and dislocation control, and advanced device fabrication. In this Perspective, we discuss strategies and recent advancements in the synthesis of single-crystalline diamond in wafer scales as well as the reduction of defects and dislocations. The development of new diamond morphologies is also reviewed, underscoring their potential to modify properties and broaden application domains. Furthermore, we highlight the progress in engineering diamond-based electronic devices, particularly, field-effect transistors (FETs). Innovations in surface conductivity optimization and the realization of stable, normally off-device operation have enhanced the performance and reliability of diamond devices. Key areas for future research are proposed throughout, offering insights into the opportunities and challenges that remain in diamond synthesis and harnessing diamond’s full potential for next-generation electronic applications.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.5c00248\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.5c00248","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Diamond: Recent Progress in Synthesis and Its Potential in Electronics
Diamond, with its extraordinary physical and electrical properties, has emerged as a transformative material for next-generation electronics. Its ultrawide bandgap, superior thermal conductivity, high carrier mobility, and excellent mechanical characteristics uniquely position it to address the limitations of traditional semiconductor materials. However, realizing the full potential of diamond in electronic applications requires overcoming significant challenges in its synthesis scalability, defect and dislocation control, and advanced device fabrication. In this Perspective, we discuss strategies and recent advancements in the synthesis of single-crystalline diamond in wafer scales as well as the reduction of defects and dislocations. The development of new diamond morphologies is also reviewed, underscoring their potential to modify properties and broaden application domains. Furthermore, we highlight the progress in engineering diamond-based electronic devices, particularly, field-effect transistors (FETs). Innovations in surface conductivity optimization and the realization of stable, normally off-device operation have enhanced the performance and reliability of diamond devices. Key areas for future research are proposed throughout, offering insights into the opportunities and challenges that remain in diamond synthesis and harnessing diamond’s full potential for next-generation electronic applications.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.