{"title":"Waveguide-Integrated MoS2 Field-Effect Transistors on Thin-Film Lithium Niobate with High Responsivity and Ultra-Low Dark Current","authors":"Fan Yang, Youtian Hu, Jiale Ou, Qingyun Li, Xiangxing Xie, Huangpu Han, Changlong Cai, Shuangchen Ruan, Bingxi Xiang","doi":"10.1021/acsphotonics.4c02618","DOIUrl":null,"url":null,"abstract":"This study investigates the photoelectric performance of MoS<sub>2</sub>-based field-effect transistors (FETs) integrated with a thin-film lithium niobate (TFLN) waveguide platform. The MoS<sub>2</sub> FET demonstrates high photodetection capabilities across a broad wavelength range from visible to near-infrared (up to 1550 nm). By adjusting the gate voltage from 0 V to −25 V, the dark current is reduced by over 6 orders of magnitude, reaching approximately 2 pA. Under 635 nm illumination, the device achieves a maximum responsivity of 940 A/W (at an input power of 35 pW), an on/off ratio (<i>I</i><sub>light</sub>/<i>I</i><sub>dark</sub>) of 10<sup>5</sup>, and a detectivity of 6.27 × 10<sup>14</sup> W<sup>–1</sup>. Significant photoresponse is also observed at telecommunication wavelengths with a responsivity of 68.7 mA/W and a detectivity of 4.58 × 10<sup>10</sup> W<sup>–1</sup> at 1310 nm. Additionally, the response times is measured to be under 300 μs across all tested wavelengths. The combination of two-dimensional material FET and TFLN offers an attractive platform for realizing high-performance optoelectronic devices and multifunctional integrated photonic circuits.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"58 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02618","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Waveguide-Integrated MoS2 Field-Effect Transistors on Thin-Film Lithium Niobate with High Responsivity and Ultra-Low Dark Current
This study investigates the photoelectric performance of MoS2-based field-effect transistors (FETs) integrated with a thin-film lithium niobate (TFLN) waveguide platform. The MoS2 FET demonstrates high photodetection capabilities across a broad wavelength range from visible to near-infrared (up to 1550 nm). By adjusting the gate voltage from 0 V to −25 V, the dark current is reduced by over 6 orders of magnitude, reaching approximately 2 pA. Under 635 nm illumination, the device achieves a maximum responsivity of 940 A/W (at an input power of 35 pW), an on/off ratio (Ilight/Idark) of 105, and a detectivity of 6.27 × 1014 W–1. Significant photoresponse is also observed at telecommunication wavelengths with a responsivity of 68.7 mA/W and a detectivity of 4.58 × 1010 W–1 at 1310 nm. Additionally, the response times is measured to be under 300 μs across all tested wavelengths. The combination of two-dimensional material FET and TFLN offers an attractive platform for realizing high-performance optoelectronic devices and multifunctional integrated photonic circuits.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.