通过实时佛斯特共振能量转移监测中风后微血栓处纳米载体药物释放和血脑屏障穿透情况

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-03 DOI:10.1021/acsnano.4c17011
Igor Khalin, Nagappanpillai Adarsh, Martina Schifferer, Antonia Wehn, Valeria J. Boide-Trujillo, Uta Mamrak, Joshua Shrouder, Thomas Misgeld, Severin Filser, Andrey S. Klymchenko, Nikolaus Plesnila
{"title":"通过实时佛斯特共振能量转移监测中风后微血栓处纳米载体药物释放和血脑屏障穿透情况","authors":"Igor Khalin, Nagappanpillai Adarsh, Martina Schifferer, Antonia Wehn, Valeria J. Boide-Trujillo, Uta Mamrak, Joshua Shrouder, Thomas Misgeld, Severin Filser, Andrey S. Klymchenko, Nikolaus Plesnila","doi":"10.1021/acsnano.4c17011","DOIUrl":null,"url":null,"abstract":"Nanotechnology holds great promise for improving the delivery of therapeutics to the brain. However, current approaches often operate at the organ or tissue level and are limited by the lack of tools to dynamically monitor cargo delivery in vivo. We have developed highly fluorescent lipid nanodroplets (LNDs) that enable tracking of nanocarrier behavior at the subcellular level while also carrying a Förster resonance energy transfer (FRET)-based drug delivery detection system (FedEcs) capable of monitoring cargo release in vivo. Using two-photon microscopy, we demonstrate that circulating LNDs in naïve mouse brain vasculature exhibit 3D real-time FRET changes, showing size-dependent stability over 2 h in blood circulation. Further, in the Nanostroke model, dynamic intravital two-photon imaging revealed that LNDs accumulated within cerebral postischemic microthrombi, where they released their cargo significantly faster than in normal blood circulation. Furthermore, the blood-brain barrier (BBB) became permeable at the microclot sites thereby allowing accumulated FedEcs-LNDs to cross the BBB and deliver their cargo to the brain parenchyma. This microthrombi-associated translocation was confirmed at the ultrastructural level via volume-correlative light-electron microscopy. Consequently, FedEcs represents an advanced tool to quantitatively study the biodistribution and cargo release of nanocarriers at high resolution in real-time. By enabling us to resolve passive targeting mechanisms poststroke, specifically, accumulation, degradation, and extravasation via poststroke microthrombi, this system could significantly enhance the translational validation of nanocarriers for future treatments of brain diseases.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"23 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocarrier Drug Release and Blood-Brain Barrier Penetration at Post-Stroke Microthrombi Monitored by Real-Time Förster Resonance Energy Transfer\",\"authors\":\"Igor Khalin, Nagappanpillai Adarsh, Martina Schifferer, Antonia Wehn, Valeria J. Boide-Trujillo, Uta Mamrak, Joshua Shrouder, Thomas Misgeld, Severin Filser, Andrey S. Klymchenko, Nikolaus Plesnila\",\"doi\":\"10.1021/acsnano.4c17011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology holds great promise for improving the delivery of therapeutics to the brain. However, current approaches often operate at the organ or tissue level and are limited by the lack of tools to dynamically monitor cargo delivery in vivo. We have developed highly fluorescent lipid nanodroplets (LNDs) that enable tracking of nanocarrier behavior at the subcellular level while also carrying a Förster resonance energy transfer (FRET)-based drug delivery detection system (FedEcs) capable of monitoring cargo release in vivo. Using two-photon microscopy, we demonstrate that circulating LNDs in naïve mouse brain vasculature exhibit 3D real-time FRET changes, showing size-dependent stability over 2 h in blood circulation. Further, in the Nanostroke model, dynamic intravital two-photon imaging revealed that LNDs accumulated within cerebral postischemic microthrombi, where they released their cargo significantly faster than in normal blood circulation. Furthermore, the blood-brain barrier (BBB) became permeable at the microclot sites thereby allowing accumulated FedEcs-LNDs to cross the BBB and deliver their cargo to the brain parenchyma. This microthrombi-associated translocation was confirmed at the ultrastructural level via volume-correlative light-electron microscopy. Consequently, FedEcs represents an advanced tool to quantitatively study the biodistribution and cargo release of nanocarriers at high resolution in real-time. By enabling us to resolve passive targeting mechanisms poststroke, specifically, accumulation, degradation, and extravasation via poststroke microthrombi, this system could significantly enhance the translational validation of nanocarriers for future treatments of brain diseases.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c17011\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanocarrier Drug Release and Blood-Brain Barrier Penetration at Post-Stroke Microthrombi Monitored by Real-Time Förster Resonance Energy Transfer

Nanocarrier Drug Release and Blood-Brain Barrier Penetration at Post-Stroke Microthrombi Monitored by Real-Time Förster Resonance Energy Transfer
Nanotechnology holds great promise for improving the delivery of therapeutics to the brain. However, current approaches often operate at the organ or tissue level and are limited by the lack of tools to dynamically monitor cargo delivery in vivo. We have developed highly fluorescent lipid nanodroplets (LNDs) that enable tracking of nanocarrier behavior at the subcellular level while also carrying a Förster resonance energy transfer (FRET)-based drug delivery detection system (FedEcs) capable of monitoring cargo release in vivo. Using two-photon microscopy, we demonstrate that circulating LNDs in naïve mouse brain vasculature exhibit 3D real-time FRET changes, showing size-dependent stability over 2 h in blood circulation. Further, in the Nanostroke model, dynamic intravital two-photon imaging revealed that LNDs accumulated within cerebral postischemic microthrombi, where they released their cargo significantly faster than in normal blood circulation. Furthermore, the blood-brain barrier (BBB) became permeable at the microclot sites thereby allowing accumulated FedEcs-LNDs to cross the BBB and deliver their cargo to the brain parenchyma. This microthrombi-associated translocation was confirmed at the ultrastructural level via volume-correlative light-electron microscopy. Consequently, FedEcs represents an advanced tool to quantitatively study the biodistribution and cargo release of nanocarriers at high resolution in real-time. By enabling us to resolve passive targeting mechanisms poststroke, specifically, accumulation, degradation, and extravasation via poststroke microthrombi, this system could significantly enhance the translational validation of nanocarriers for future treatments of brain diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信