Glauco Meireles Mascarenhas Morandi Lustosa, Agnes Nascimento Simões, Eugênio de Souza Morita, André Nunes de Souza, Floriano Torres Neto, Waldir Antonio Bizzo, Talita Mazon
{"title":"纳米工程PDMS/Pd/ zno传感器改善室温下油中H2溶解气体的检测","authors":"Glauco Meireles Mascarenhas Morandi Lustosa, Agnes Nascimento Simões, Eugênio de Souza Morita, André Nunes de Souza, Floriano Torres Neto, Waldir Antonio Bizzo, Talita Mazon","doi":"10.1021/acssensors.4c02896","DOIUrl":null,"url":null,"abstract":"The current research aims to synthesize zinc oxide decorated with palladium nanoparticles and develop a stable sensor with high sensitivity to hydrogen gas dissolved in oil. ZnO nanorods (NR) were synthesized by a hydrothermal method directly onto a commercial sensor board with gold interdigital electrodes, followed by functionalization with Pd nanoparticles (NP) by drop casting. SEM images show ZnO NRs with an average diameter of ∼220 nm and Pd spherical NPs with diameters of 35–75 nm. Finally, the sensing properties were examined by immersing the sensor into insulating mineral oil in a closed system, where different H<sub>2</sub> concentrations (from 0 up to 500 ppm) were injected into the headspace and then dissolved in the mineral oil, according to the Ostwald coefficient. All measurements were carried out at room temperature. The electrical characterization showed that our sensor had good repeatability, stability, and sensitivity to detect lower concentrations (less than 10 ppm). Additionally, a nanoengineered porous layer of PDMS was prepared over the sensor board through spin coating and heat treatment, and then the sensitivity of our sensor board reached ∼2.8 ppm of H<sub>2</sub> gas. Our findings indicate that the methodology applied improves gas detection performance in industrial applications and its potential use for real-time monitoring.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"58 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoengineered PDMS/Pd/ZnO-Based Sensor to Improve Detection of H2 Dissolved Gas in Oil at Room Temperature\",\"authors\":\"Glauco Meireles Mascarenhas Morandi Lustosa, Agnes Nascimento Simões, Eugênio de Souza Morita, André Nunes de Souza, Floriano Torres Neto, Waldir Antonio Bizzo, Talita Mazon\",\"doi\":\"10.1021/acssensors.4c02896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current research aims to synthesize zinc oxide decorated with palladium nanoparticles and develop a stable sensor with high sensitivity to hydrogen gas dissolved in oil. ZnO nanorods (NR) were synthesized by a hydrothermal method directly onto a commercial sensor board with gold interdigital electrodes, followed by functionalization with Pd nanoparticles (NP) by drop casting. SEM images show ZnO NRs with an average diameter of ∼220 nm and Pd spherical NPs with diameters of 35–75 nm. Finally, the sensing properties were examined by immersing the sensor into insulating mineral oil in a closed system, where different H<sub>2</sub> concentrations (from 0 up to 500 ppm) were injected into the headspace and then dissolved in the mineral oil, according to the Ostwald coefficient. All measurements were carried out at room temperature. The electrical characterization showed that our sensor had good repeatability, stability, and sensitivity to detect lower concentrations (less than 10 ppm). Additionally, a nanoengineered porous layer of PDMS was prepared over the sensor board through spin coating and heat treatment, and then the sensitivity of our sensor board reached ∼2.8 ppm of H<sub>2</sub> gas. Our findings indicate that the methodology applied improves gas detection performance in industrial applications and its potential use for real-time monitoring.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.4c02896\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02896","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Nanoengineered PDMS/Pd/ZnO-Based Sensor to Improve Detection of H2 Dissolved Gas in Oil at Room Temperature
The current research aims to synthesize zinc oxide decorated with palladium nanoparticles and develop a stable sensor with high sensitivity to hydrogen gas dissolved in oil. ZnO nanorods (NR) were synthesized by a hydrothermal method directly onto a commercial sensor board with gold interdigital electrodes, followed by functionalization with Pd nanoparticles (NP) by drop casting. SEM images show ZnO NRs with an average diameter of ∼220 nm and Pd spherical NPs with diameters of 35–75 nm. Finally, the sensing properties were examined by immersing the sensor into insulating mineral oil in a closed system, where different H2 concentrations (from 0 up to 500 ppm) were injected into the headspace and then dissolved in the mineral oil, according to the Ostwald coefficient. All measurements were carried out at room temperature. The electrical characterization showed that our sensor had good repeatability, stability, and sensitivity to detect lower concentrations (less than 10 ppm). Additionally, a nanoengineered porous layer of PDMS was prepared over the sensor board through spin coating and heat treatment, and then the sensitivity of our sensor board reached ∼2.8 ppm of H2 gas. Our findings indicate that the methodology applied improves gas detection performance in industrial applications and its potential use for real-time monitoring.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.