Zechao Jiang, Liyiming Tao, Xiuyuan Yang, Masao Doi, Ye Xu, Xingkun Man
{"title":"二元液滴干燥法在大范围内均匀沉积颗粒","authors":"Zechao Jiang, Liyiming Tao, Xiuyuan Yang, Masao Doi, Ye Xu, Xingkun Man","doi":"10.1002/smll.202501549","DOIUrl":null,"url":null,"abstract":"<p>The evaporation of liquid droplets often results in a ring-like deposition pattern of particles, presenting challenges for applications requiring highly uniform patterns. Despite extensive efforts to suppress the coffee ring effect, achieving a uniform particle distribution remains a great challenge due to the complex and non-equilibrium nature of the evaporation process. In this work, a one-step drying method is introduced and demonstrated for binary droplets (water and 2-methoxyethanol) that produces uniform deposition of nano- and micro-particles. By adjusting the initial water volume fraction, we effectively control the interplay between capillary and Marangoni flows, resulting in deposition patterns that vary from coffee ring to uniform and to volcano-like. Through both theoretical and experimental analyses, we determine the conditions necessary for achieving such high uniformity. This approach requires no special substrate treatment, particle modification, or controlled environments, and works for various particles, including silica and polystyrene. This method provides a robust solution for fabricating uniform patterns that are crucial for many practical applications, ranging from printing to microelectronics to bio-pharmacy.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 21","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform Deposition of Particles in Large Scale by Drying of Binary Droplets\",\"authors\":\"Zechao Jiang, Liyiming Tao, Xiuyuan Yang, Masao Doi, Ye Xu, Xingkun Man\",\"doi\":\"10.1002/smll.202501549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The evaporation of liquid droplets often results in a ring-like deposition pattern of particles, presenting challenges for applications requiring highly uniform patterns. Despite extensive efforts to suppress the coffee ring effect, achieving a uniform particle distribution remains a great challenge due to the complex and non-equilibrium nature of the evaporation process. In this work, a one-step drying method is introduced and demonstrated for binary droplets (water and 2-methoxyethanol) that produces uniform deposition of nano- and micro-particles. By adjusting the initial water volume fraction, we effectively control the interplay between capillary and Marangoni flows, resulting in deposition patterns that vary from coffee ring to uniform and to volcano-like. Through both theoretical and experimental analyses, we determine the conditions necessary for achieving such high uniformity. This approach requires no special substrate treatment, particle modification, or controlled environments, and works for various particles, including silica and polystyrene. This method provides a robust solution for fabricating uniform patterns that are crucial for many practical applications, ranging from printing to microelectronics to bio-pharmacy.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 21\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501549\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501549","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Uniform Deposition of Particles in Large Scale by Drying of Binary Droplets
The evaporation of liquid droplets often results in a ring-like deposition pattern of particles, presenting challenges for applications requiring highly uniform patterns. Despite extensive efforts to suppress the coffee ring effect, achieving a uniform particle distribution remains a great challenge due to the complex and non-equilibrium nature of the evaporation process. In this work, a one-step drying method is introduced and demonstrated for binary droplets (water and 2-methoxyethanol) that produces uniform deposition of nano- and micro-particles. By adjusting the initial water volume fraction, we effectively control the interplay between capillary and Marangoni flows, resulting in deposition patterns that vary from coffee ring to uniform and to volcano-like. Through both theoretical and experimental analyses, we determine the conditions necessary for achieving such high uniformity. This approach requires no special substrate treatment, particle modification, or controlled environments, and works for various particles, including silica and polystyrene. This method provides a robust solution for fabricating uniform patterns that are crucial for many practical applications, ranging from printing to microelectronics to bio-pharmacy.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.