Yue Pang, Yaoqiang Zhou, Shirong Qiu, Lei Tong, Ni Zhao, Jian-Bin Xu
{"title":"基于非易失性抗双极晶体管的人工非单调神经元","authors":"Yue Pang, Yaoqiang Zhou, Shirong Qiu, Lei Tong, Ni Zhao, Jian-Bin Xu","doi":"10.1038/s41467-025-58541-8","DOIUrl":null,"url":null,"abstract":"<p>Non-monotonic neurons integrate monotonic input into a non-monotonic response, effectively improving the efficiency of unsupervised learning and precision of information processing in peripheral sensor systems. However, non-monotonic neuron-synapse circuits based on conventional technology require multiple transistors and complicated layouts. By leveraging the advantages of compact design for complex functions with two-dimensional materials, herein, we used anti-ambipolar transistor with airgaps configuration to fabricate the non-monotonic neuron with a bell-shaped response function. The anti-ambipolar transistor demonstrated near-ideal subthreshold swings of 60 mV/dec, a benchmark combination of a high peak-to-valley ratio of ~10<sup>5</sup>. By utilizing the floating gate architecture, the non-volatile transistors achieved a high operating speed ~10<sup>−7 </sup>s and robust durability exceeding 10<sup>4</sup> cycles. The non-volatile anti-ambipolar transistor showed spike amplitude, width, and number-dependent excitation and inhibition synaptic behaviors. Furthermore, its non-volatile performance can replicate biological neurons showing a reconfigurable monotonic and non-monotonic response by modulating the amplitude and width of presynaptic input. We encoded systolic blood pressure and resting heart rate data to train non-monotonic neurons, achieving the prediction of health conditions with a detection accuracy surpassing 85% at the device level, closely corresponding to the recognized medical standards.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"29 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial non-monotonic neurons based on nonvolatile anti-ambipolar transistors\",\"authors\":\"Yue Pang, Yaoqiang Zhou, Shirong Qiu, Lei Tong, Ni Zhao, Jian-Bin Xu\",\"doi\":\"10.1038/s41467-025-58541-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-monotonic neurons integrate monotonic input into a non-monotonic response, effectively improving the efficiency of unsupervised learning and precision of information processing in peripheral sensor systems. However, non-monotonic neuron-synapse circuits based on conventional technology require multiple transistors and complicated layouts. By leveraging the advantages of compact design for complex functions with two-dimensional materials, herein, we used anti-ambipolar transistor with airgaps configuration to fabricate the non-monotonic neuron with a bell-shaped response function. The anti-ambipolar transistor demonstrated near-ideal subthreshold swings of 60 mV/dec, a benchmark combination of a high peak-to-valley ratio of ~10<sup>5</sup>. By utilizing the floating gate architecture, the non-volatile transistors achieved a high operating speed ~10<sup>−7 </sup>s and robust durability exceeding 10<sup>4</sup> cycles. The non-volatile anti-ambipolar transistor showed spike amplitude, width, and number-dependent excitation and inhibition synaptic behaviors. Furthermore, its non-volatile performance can replicate biological neurons showing a reconfigurable monotonic and non-monotonic response by modulating the amplitude and width of presynaptic input. We encoded systolic blood pressure and resting heart rate data to train non-monotonic neurons, achieving the prediction of health conditions with a detection accuracy surpassing 85% at the device level, closely corresponding to the recognized medical standards.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58541-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58541-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Artificial non-monotonic neurons based on nonvolatile anti-ambipolar transistors
Non-monotonic neurons integrate monotonic input into a non-monotonic response, effectively improving the efficiency of unsupervised learning and precision of information processing in peripheral sensor systems. However, non-monotonic neuron-synapse circuits based on conventional technology require multiple transistors and complicated layouts. By leveraging the advantages of compact design for complex functions with two-dimensional materials, herein, we used anti-ambipolar transistor with airgaps configuration to fabricate the non-monotonic neuron with a bell-shaped response function. The anti-ambipolar transistor demonstrated near-ideal subthreshold swings of 60 mV/dec, a benchmark combination of a high peak-to-valley ratio of ~105. By utilizing the floating gate architecture, the non-volatile transistors achieved a high operating speed ~10−7 s and robust durability exceeding 104 cycles. The non-volatile anti-ambipolar transistor showed spike amplitude, width, and number-dependent excitation and inhibition synaptic behaviors. Furthermore, its non-volatile performance can replicate biological neurons showing a reconfigurable monotonic and non-monotonic response by modulating the amplitude and width of presynaptic input. We encoded systolic blood pressure and resting heart rate data to train non-monotonic neurons, achieving the prediction of health conditions with a detection accuracy surpassing 85% at the device level, closely corresponding to the recognized medical standards.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.