基于非易失性抗双极晶体管的人工非单调神经元

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yue Pang, Yaoqiang Zhou, Shirong Qiu, Lei Tong, Ni Zhao, Jian-Bin Xu
{"title":"基于非易失性抗双极晶体管的人工非单调神经元","authors":"Yue Pang, Yaoqiang Zhou, Shirong Qiu, Lei Tong, Ni Zhao, Jian-Bin Xu","doi":"10.1038/s41467-025-58541-8","DOIUrl":null,"url":null,"abstract":"<p>Non-monotonic neurons integrate monotonic input into a non-monotonic response, effectively improving the efficiency of unsupervised learning and precision of information processing in peripheral sensor systems. However, non-monotonic neuron-synapse circuits based on conventional technology require multiple transistors and complicated layouts. By leveraging the advantages of compact design for complex functions with two-dimensional materials, herein, we used anti-ambipolar transistor with airgaps configuration to fabricate the non-monotonic neuron with a bell-shaped response function. The anti-ambipolar transistor demonstrated near-ideal subthreshold swings of 60 mV/dec, a benchmark combination of a high peak-to-valley ratio of ~10<sup>5</sup>. By utilizing the floating gate architecture, the non-volatile transistors achieved a high operating speed ~10<sup>−7 </sup>s and robust durability exceeding 10<sup>4</sup> cycles. The non-volatile anti-ambipolar transistor showed spike amplitude, width, and number-dependent excitation and inhibition synaptic behaviors. Furthermore, its non-volatile performance can replicate biological neurons showing a reconfigurable monotonic and non-monotonic response by modulating the amplitude and width of presynaptic input. We encoded systolic blood pressure and resting heart rate data to train non-monotonic neurons, achieving the prediction of health conditions with a detection accuracy surpassing 85% at the device level, closely corresponding to the recognized medical standards.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"29 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial non-monotonic neurons based on nonvolatile anti-ambipolar transistors\",\"authors\":\"Yue Pang, Yaoqiang Zhou, Shirong Qiu, Lei Tong, Ni Zhao, Jian-Bin Xu\",\"doi\":\"10.1038/s41467-025-58541-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-monotonic neurons integrate monotonic input into a non-monotonic response, effectively improving the efficiency of unsupervised learning and precision of information processing in peripheral sensor systems. However, non-monotonic neuron-synapse circuits based on conventional technology require multiple transistors and complicated layouts. By leveraging the advantages of compact design for complex functions with two-dimensional materials, herein, we used anti-ambipolar transistor with airgaps configuration to fabricate the non-monotonic neuron with a bell-shaped response function. The anti-ambipolar transistor demonstrated near-ideal subthreshold swings of 60 mV/dec, a benchmark combination of a high peak-to-valley ratio of ~10<sup>5</sup>. By utilizing the floating gate architecture, the non-volatile transistors achieved a high operating speed ~10<sup>−7 </sup>s and robust durability exceeding 10<sup>4</sup> cycles. The non-volatile anti-ambipolar transistor showed spike amplitude, width, and number-dependent excitation and inhibition synaptic behaviors. Furthermore, its non-volatile performance can replicate biological neurons showing a reconfigurable monotonic and non-monotonic response by modulating the amplitude and width of presynaptic input. We encoded systolic blood pressure and resting heart rate data to train non-monotonic neurons, achieving the prediction of health conditions with a detection accuracy surpassing 85% at the device level, closely corresponding to the recognized medical standards.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58541-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58541-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

非单调神经元将单调输入整合为非单调响应,有效地提高了外围传感器系统无监督学习的效率和信息处理的精度。然而,基于传统技术的非单调神经元-突触电路需要多个晶体管和复杂的布局。利用二维材料复杂功能的紧凑设计优势,我们采用气隙结构的抗双极晶体管来制造具有钟形响应函数的非单调神经元。抗双极晶体管显示出接近理想的60 mV/dec亚阈值振荡,峰值谷比约为105的基准组合。通过利用浮栅结构,非易失性晶体管实现了高达10−7 s的高工作速度和超过104次循环的耐用性。非易失性抗双极晶体管表现出与峰值幅度、宽度和数量相关的突触激发和抑制行为。此外,它的非挥发性性能可以通过调节突触前输入的振幅和宽度来复制生物神经元,表现出可重构的单调和非单调响应。我们对收缩压和静息心率数据进行编码,训练非单调神经元,实现了对健康状况的预测,在设备层面的检测准确率超过85%,与公认的医疗标准非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial non-monotonic neurons based on nonvolatile anti-ambipolar transistors

Artificial non-monotonic neurons based on nonvolatile anti-ambipolar transistors

Non-monotonic neurons integrate monotonic input into a non-monotonic response, effectively improving the efficiency of unsupervised learning and precision of information processing in peripheral sensor systems. However, non-monotonic neuron-synapse circuits based on conventional technology require multiple transistors and complicated layouts. By leveraging the advantages of compact design for complex functions with two-dimensional materials, herein, we used anti-ambipolar transistor with airgaps configuration to fabricate the non-monotonic neuron with a bell-shaped response function. The anti-ambipolar transistor demonstrated near-ideal subthreshold swings of 60 mV/dec, a benchmark combination of a high peak-to-valley ratio of ~105. By utilizing the floating gate architecture, the non-volatile transistors achieved a high operating speed ~10−7 s and robust durability exceeding 104 cycles. The non-volatile anti-ambipolar transistor showed spike amplitude, width, and number-dependent excitation and inhibition synaptic behaviors. Furthermore, its non-volatile performance can replicate biological neurons showing a reconfigurable monotonic and non-monotonic response by modulating the amplitude and width of presynaptic input. We encoded systolic blood pressure and resting heart rate data to train non-monotonic neurons, achieving the prediction of health conditions with a detection accuracy surpassing 85% at the device level, closely corresponding to the recognized medical standards.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信