基于独立氧化铁电薄膜的超高功率密度柔性压电能量收集器

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhongqi Ren, Shiqing Deng, Junda Shao, Yangyang Si, Chao Zhou, Jingjing Luo, Tao Wang, Jinyang Li, Jingxuan Li, Haipeng Liu, Xue Qi, Peike Wang, Ao Yin, Lijun Wu, Suzhu Yu, Yimei Zhu, Jun Chen, Sujit Das, Jun Wei, Zuhuang Chen
{"title":"基于独立氧化铁电薄膜的超高功率密度柔性压电能量收集器","authors":"Zhongqi Ren, Shiqing Deng, Junda Shao, Yangyang Si, Chao Zhou, Jingjing Luo, Tao Wang, Jinyang Li, Jingxuan Li, Haipeng Liu, Xue Qi, Peike Wang, Ao Yin, Lijun Wu, Suzhu Yu, Yimei Zhu, Jun Chen, Sujit Das, Jun Wei, Zuhuang Chen","doi":"10.1038/s41467-025-58386-1","DOIUrl":null,"url":null,"abstract":"<p>Flexible piezoelectric nanogenerators are emerging as a promising solution for powering next-generation flexible electronics by converting mechanical energy into electrical energy. However, traditional ferroelectric ceramics, despite their excellent piezoelectric properties, lack flexibility; while piezoelectric polymers, although highly flexible, have low piezoelectricity. The quest to develop materials that combine high piezoelectricity with exceptional flexibility has thus become a research focus. Herein, we present a breakthrough in this field with the fabrication of freestanding (111)-oriented PbZr<sub>0.52</sub>Ti<sub>0.48</sub>O<sub>3</sub> single crystalline thin films, which exhibit remarkable flexibility and a high converse piezoelectric coefficient (~585 pm/V). This is achieved through water-soluble sacrificial layer to relieve substrate clamping and controlling the crystal orientation to further enhance the piezoelectric response. Our nanogenerators, constructed using these freestanding nanoscale membranes, demonstrate a record-high output power density (~63.5 mW/cm<sup>3</sup>), excellent flexibility (with a strain tolerance &gt;3.4%), and superior mechanical stability in cycling tests (&gt;60,000 cycles). These advancements pave the way for high-performance, flexible electronic devices utilizing ferroelectric oxide thin films.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh-power-density flexible piezoelectric energy harvester based on freestanding ferroelectric oxide thin films\",\"authors\":\"Zhongqi Ren, Shiqing Deng, Junda Shao, Yangyang Si, Chao Zhou, Jingjing Luo, Tao Wang, Jinyang Li, Jingxuan Li, Haipeng Liu, Xue Qi, Peike Wang, Ao Yin, Lijun Wu, Suzhu Yu, Yimei Zhu, Jun Chen, Sujit Das, Jun Wei, Zuhuang Chen\",\"doi\":\"10.1038/s41467-025-58386-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible piezoelectric nanogenerators are emerging as a promising solution for powering next-generation flexible electronics by converting mechanical energy into electrical energy. However, traditional ferroelectric ceramics, despite their excellent piezoelectric properties, lack flexibility; while piezoelectric polymers, although highly flexible, have low piezoelectricity. The quest to develop materials that combine high piezoelectricity with exceptional flexibility has thus become a research focus. Herein, we present a breakthrough in this field with the fabrication of freestanding (111)-oriented PbZr<sub>0.52</sub>Ti<sub>0.48</sub>O<sub>3</sub> single crystalline thin films, which exhibit remarkable flexibility and a high converse piezoelectric coefficient (~585 pm/V). This is achieved through water-soluble sacrificial layer to relieve substrate clamping and controlling the crystal orientation to further enhance the piezoelectric response. Our nanogenerators, constructed using these freestanding nanoscale membranes, demonstrate a record-high output power density (~63.5 mW/cm<sup>3</sup>), excellent flexibility (with a strain tolerance &gt;3.4%), and superior mechanical stability in cycling tests (&gt;60,000 cycles). These advancements pave the way for high-performance, flexible electronic devices utilizing ferroelectric oxide thin films.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58386-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58386-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

柔性压电纳米发电机通过将机械能转换为电能,为下一代柔性电子产品提供动力,这是一种很有前途的解决方案。然而,传统的铁电陶瓷虽然具有优异的压电性能,但缺乏柔韧性;而压电聚合物虽然具有很高的柔韧性,但其压电性很低。因此,开发结合高压电性和特殊柔韧性的材料已成为研究重点。在此,我们提出了该领域的突破,制备了独立(111)取向的PbZr0.52Ti0.48O3单晶薄膜,该薄膜具有显著的柔韧性和高的反向压电系数(~585 pm/V)。这是通过水溶性牺牲层减轻衬底夹紧和控制晶体取向来进一步提高压电响应来实现的。我们的纳米发电机使用这些独立的纳米级膜构建,在循环测试中显示出创纪录的高输出功率密度(~63.5 mW/cm3),出色的灵活性(应变容限>;3.4%)和卓越的机械稳定性(>60,000次循环)。这些进步为利用铁电氧化物薄膜的高性能、柔性电子设备铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrahigh-power-density flexible piezoelectric energy harvester based on freestanding ferroelectric oxide thin films

Ultrahigh-power-density flexible piezoelectric energy harvester based on freestanding ferroelectric oxide thin films

Flexible piezoelectric nanogenerators are emerging as a promising solution for powering next-generation flexible electronics by converting mechanical energy into electrical energy. However, traditional ferroelectric ceramics, despite their excellent piezoelectric properties, lack flexibility; while piezoelectric polymers, although highly flexible, have low piezoelectricity. The quest to develop materials that combine high piezoelectricity with exceptional flexibility has thus become a research focus. Herein, we present a breakthrough in this field with the fabrication of freestanding (111)-oriented PbZr0.52Ti0.48O3 single crystalline thin films, which exhibit remarkable flexibility and a high converse piezoelectric coefficient (~585 pm/V). This is achieved through water-soluble sacrificial layer to relieve substrate clamping and controlling the crystal orientation to further enhance the piezoelectric response. Our nanogenerators, constructed using these freestanding nanoscale membranes, demonstrate a record-high output power density (~63.5 mW/cm3), excellent flexibility (with a strain tolerance >3.4%), and superior mechanical stability in cycling tests (>60,000 cycles). These advancements pave the way for high-performance, flexible electronic devices utilizing ferroelectric oxide thin films.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信