Zhongqi Ren, Shiqing Deng, Junda Shao, Yangyang Si, Chao Zhou, Jingjing Luo, Tao Wang, Jinyang Li, Jingxuan Li, Haipeng Liu, Xue Qi, Peike Wang, Ao Yin, Lijun Wu, Suzhu Yu, Yimei Zhu, Jun Chen, Sujit Das, Jun Wei, Zuhuang Chen
{"title":"基于独立氧化铁电薄膜的超高功率密度柔性压电能量收集器","authors":"Zhongqi Ren, Shiqing Deng, Junda Shao, Yangyang Si, Chao Zhou, Jingjing Luo, Tao Wang, Jinyang Li, Jingxuan Li, Haipeng Liu, Xue Qi, Peike Wang, Ao Yin, Lijun Wu, Suzhu Yu, Yimei Zhu, Jun Chen, Sujit Das, Jun Wei, Zuhuang Chen","doi":"10.1038/s41467-025-58386-1","DOIUrl":null,"url":null,"abstract":"<p>Flexible piezoelectric nanogenerators are emerging as a promising solution for powering next-generation flexible electronics by converting mechanical energy into electrical energy. However, traditional ferroelectric ceramics, despite their excellent piezoelectric properties, lack flexibility; while piezoelectric polymers, although highly flexible, have low piezoelectricity. The quest to develop materials that combine high piezoelectricity with exceptional flexibility has thus become a research focus. Herein, we present a breakthrough in this field with the fabrication of freestanding (111)-oriented PbZr<sub>0.52</sub>Ti<sub>0.48</sub>O<sub>3</sub> single crystalline thin films, which exhibit remarkable flexibility and a high converse piezoelectric coefficient (~585 pm/V). This is achieved through water-soluble sacrificial layer to relieve substrate clamping and controlling the crystal orientation to further enhance the piezoelectric response. Our nanogenerators, constructed using these freestanding nanoscale membranes, demonstrate a record-high output power density (~63.5 mW/cm<sup>3</sup>), excellent flexibility (with a strain tolerance >3.4%), and superior mechanical stability in cycling tests (>60,000 cycles). These advancements pave the way for high-performance, flexible electronic devices utilizing ferroelectric oxide thin films.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh-power-density flexible piezoelectric energy harvester based on freestanding ferroelectric oxide thin films\",\"authors\":\"Zhongqi Ren, Shiqing Deng, Junda Shao, Yangyang Si, Chao Zhou, Jingjing Luo, Tao Wang, Jinyang Li, Jingxuan Li, Haipeng Liu, Xue Qi, Peike Wang, Ao Yin, Lijun Wu, Suzhu Yu, Yimei Zhu, Jun Chen, Sujit Das, Jun Wei, Zuhuang Chen\",\"doi\":\"10.1038/s41467-025-58386-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible piezoelectric nanogenerators are emerging as a promising solution for powering next-generation flexible electronics by converting mechanical energy into electrical energy. However, traditional ferroelectric ceramics, despite their excellent piezoelectric properties, lack flexibility; while piezoelectric polymers, although highly flexible, have low piezoelectricity. The quest to develop materials that combine high piezoelectricity with exceptional flexibility has thus become a research focus. Herein, we present a breakthrough in this field with the fabrication of freestanding (111)-oriented PbZr<sub>0.52</sub>Ti<sub>0.48</sub>O<sub>3</sub> single crystalline thin films, which exhibit remarkable flexibility and a high converse piezoelectric coefficient (~585 pm/V). This is achieved through water-soluble sacrificial layer to relieve substrate clamping and controlling the crystal orientation to further enhance the piezoelectric response. Our nanogenerators, constructed using these freestanding nanoscale membranes, demonstrate a record-high output power density (~63.5 mW/cm<sup>3</sup>), excellent flexibility (with a strain tolerance >3.4%), and superior mechanical stability in cycling tests (>60,000 cycles). These advancements pave the way for high-performance, flexible electronic devices utilizing ferroelectric oxide thin films.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58386-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58386-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Ultrahigh-power-density flexible piezoelectric energy harvester based on freestanding ferroelectric oxide thin films
Flexible piezoelectric nanogenerators are emerging as a promising solution for powering next-generation flexible electronics by converting mechanical energy into electrical energy. However, traditional ferroelectric ceramics, despite their excellent piezoelectric properties, lack flexibility; while piezoelectric polymers, although highly flexible, have low piezoelectricity. The quest to develop materials that combine high piezoelectricity with exceptional flexibility has thus become a research focus. Herein, we present a breakthrough in this field with the fabrication of freestanding (111)-oriented PbZr0.52Ti0.48O3 single crystalline thin films, which exhibit remarkable flexibility and a high converse piezoelectric coefficient (~585 pm/V). This is achieved through water-soluble sacrificial layer to relieve substrate clamping and controlling the crystal orientation to further enhance the piezoelectric response. Our nanogenerators, constructed using these freestanding nanoscale membranes, demonstrate a record-high output power density (~63.5 mW/cm3), excellent flexibility (with a strain tolerance >3.4%), and superior mechanical stability in cycling tests (>60,000 cycles). These advancements pave the way for high-performance, flexible electronic devices utilizing ferroelectric oxide thin films.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.