在银催化剂上,电激活靛蓝可强化安培级二氧化碳还原为一氧化碳的过程

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhengyuan Li, Xing Li, Ruoyu Wang, Astrid Campos Mata, Carter S. Gerke, Shuting Xiang, Anmol Mathur, Lingyu Zhang, Dian-Zhao Lin, Tianchen Li, Krish N. Jayarapu, Andong Liu, Lavanya Gupta, Anatoly I. Frenkel, V. Sara Thoi, Pulickel M. Ajayan, Soumyabrata Roy, Yuanyue Liu, Yayuan Liu
{"title":"在银催化剂上,电激活靛蓝可强化安培级二氧化碳还原为一氧化碳的过程","authors":"Zhengyuan Li, Xing Li, Ruoyu Wang, Astrid Campos Mata, Carter S. Gerke, Shuting Xiang, Anmol Mathur, Lingyu Zhang, Dian-Zhao Lin, Tianchen Li, Krish N. Jayarapu, Andong Liu, Lavanya Gupta, Anatoly I. Frenkel, V. Sara Thoi, Pulickel M. Ajayan, Soumyabrata Roy, Yuanyue Liu, Yayuan Liu","doi":"10.1038/s41467-025-58593-w","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical reduction of carbon dioxide (CO<sub>2</sub>) to carbon monoxide (CO) is challenged by a selectivity decline at high current densities. Here we report a class of indigo-based molecular promoters with redox-active CO<sub>2</sub> binding sites to enhance the high-rate conversion of CO<sub>2</sub> to CO on silver (Ag) catalysts. Theoretical calculations and in situ spectroscopy analyses demonstrate that the synergistic effect at the interface of indigo-derived compounds and Ag nanoparticles could activate CO<sub>2</sub> molecules and accelerate the formation of key intermediates (*CO<sub>2</sub><sup>–</sup> and *COOH) in the CO pathway. Indigo derivatives with electron-withdrawing groups further reduce the overpotential for CO production upon optimizing the interfacial CO<sub>2</sub> binding affinity. By integrating the molecular design of redox-active centres with the defect engineering of Ag structures, we achieve a Faradaic efficiency for CO exceeding 90% across a current density range of 0.10 − 1.20 A cm<sup>–2</sup>. The Ag mass activity toward CO increases to 174 A mg<sup>–1</sup><sub>Ag</sub>. This work showcases that employing redox-active CO<sub>2</sub> sorbents as surface modification agents is a highly effective strategy to intensify the reactivity of electrochemical CO<sub>2</sub> reduction.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"141 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electro-activated indigos intensify ampere-level CO2 reduction to CO on silver catalysts\",\"authors\":\"Zhengyuan Li, Xing Li, Ruoyu Wang, Astrid Campos Mata, Carter S. Gerke, Shuting Xiang, Anmol Mathur, Lingyu Zhang, Dian-Zhao Lin, Tianchen Li, Krish N. Jayarapu, Andong Liu, Lavanya Gupta, Anatoly I. Frenkel, V. Sara Thoi, Pulickel M. Ajayan, Soumyabrata Roy, Yuanyue Liu, Yayuan Liu\",\"doi\":\"10.1038/s41467-025-58593-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrochemical reduction of carbon dioxide (CO<sub>2</sub>) to carbon monoxide (CO) is challenged by a selectivity decline at high current densities. Here we report a class of indigo-based molecular promoters with redox-active CO<sub>2</sub> binding sites to enhance the high-rate conversion of CO<sub>2</sub> to CO on silver (Ag) catalysts. Theoretical calculations and in situ spectroscopy analyses demonstrate that the synergistic effect at the interface of indigo-derived compounds and Ag nanoparticles could activate CO<sub>2</sub> molecules and accelerate the formation of key intermediates (*CO<sub>2</sub><sup>–</sup> and *COOH) in the CO pathway. Indigo derivatives with electron-withdrawing groups further reduce the overpotential for CO production upon optimizing the interfacial CO<sub>2</sub> binding affinity. By integrating the molecular design of redox-active centres with the defect engineering of Ag structures, we achieve a Faradaic efficiency for CO exceeding 90% across a current density range of 0.10 − 1.20 A cm<sup>–2</sup>. The Ag mass activity toward CO increases to 174 A mg<sup>–1</sup><sub>Ag</sub>. This work showcases that employing redox-active CO<sub>2</sub> sorbents as surface modification agents is a highly effective strategy to intensify the reactivity of electrochemical CO<sub>2</sub> reduction.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58593-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58593-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electro-activated indigos intensify ampere-level CO2 reduction to CO on silver catalysts

Electro-activated indigos intensify ampere-level CO2 reduction to CO on silver catalysts

The electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is challenged by a selectivity decline at high current densities. Here we report a class of indigo-based molecular promoters with redox-active CO2 binding sites to enhance the high-rate conversion of CO2 to CO on silver (Ag) catalysts. Theoretical calculations and in situ spectroscopy analyses demonstrate that the synergistic effect at the interface of indigo-derived compounds and Ag nanoparticles could activate CO2 molecules and accelerate the formation of key intermediates (*CO2 and *COOH) in the CO pathway. Indigo derivatives with electron-withdrawing groups further reduce the overpotential for CO production upon optimizing the interfacial CO2 binding affinity. By integrating the molecular design of redox-active centres with the defect engineering of Ag structures, we achieve a Faradaic efficiency for CO exceeding 90% across a current density range of 0.10 − 1.20 A cm–2. The Ag mass activity toward CO increases to 174 A mg–1Ag. This work showcases that employing redox-active CO2 sorbents as surface modification agents is a highly effective strategy to intensify the reactivity of electrochemical CO2 reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信