CMV2U-Net:带有边缘加权特征的 U 型网络,用于检测和定位图像拼接。

Arslan Akram, Muhammad Arfan Jaffar, Javed Rashid, Salah Mahmoud Boulaaras, Muhammad Faheem
{"title":"CMV2U-Net:带有边缘加权特征的 U 型网络,用于检测和定位图像拼接。","authors":"Arslan Akram, Muhammad Arfan Jaffar, Javed Rashid, Salah Mahmoud Boulaaras, Muhammad Faheem","doi":"10.1111/1556-4029.70033","DOIUrl":null,"url":null,"abstract":"<p><p>The practice of cutting and pasting portions of one image into another, known as \"image splicing,\" is commonplace in the field of image manipulation. Image splicing detection using deep learning has been a hot research topic for the past few years. However, there are two problems with the way deep learning is currently implemented: first, it is not good enough for feature fusion, and second, it uses only simple models for feature extraction and encoding, which makes the models vulnerable to overfitting. To tackle these problems, this research proposes CMV2U-Net, an edge-weighted U-shaped network-based image splicing forgery localization approach. An initial step is the development of a feature extraction module that can process two streams of input images simultaneously, allowing for the simultaneous extraction of semantically connected and semantically agnostic features. One characteristic is that a hierarchical fusion approach has been devised to prevent data loss in shallow features that are either semantically related or semantically irrelevant. This approach implements a channel attention mechanism to monitor manipulation trajectories involving multiple levels. Extensive trials on numerous public datasets prove that CMV2U-Net provides high AUC and F<sub>1</sub> in localizing tampered regions, outperforming state-of-the-art techniques. Noise, Gaussian blur, and JPEG compression are post-processing threats that CMV2U-Net has successfully resisted.</p>","PeriodicalId":94080,"journal":{"name":"Journal of forensic sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMV2U-Net: A U-shaped network with edge-weighted features for detecting and localizing image splicing.\",\"authors\":\"Arslan Akram, Muhammad Arfan Jaffar, Javed Rashid, Salah Mahmoud Boulaaras, Muhammad Faheem\",\"doi\":\"10.1111/1556-4029.70033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The practice of cutting and pasting portions of one image into another, known as \\\"image splicing,\\\" is commonplace in the field of image manipulation. Image splicing detection using deep learning has been a hot research topic for the past few years. However, there are two problems with the way deep learning is currently implemented: first, it is not good enough for feature fusion, and second, it uses only simple models for feature extraction and encoding, which makes the models vulnerable to overfitting. To tackle these problems, this research proposes CMV2U-Net, an edge-weighted U-shaped network-based image splicing forgery localization approach. An initial step is the development of a feature extraction module that can process two streams of input images simultaneously, allowing for the simultaneous extraction of semantically connected and semantically agnostic features. One characteristic is that a hierarchical fusion approach has been devised to prevent data loss in shallow features that are either semantically related or semantically irrelevant. This approach implements a channel attention mechanism to monitor manipulation trajectories involving multiple levels. Extensive trials on numerous public datasets prove that CMV2U-Net provides high AUC and F<sub>1</sub> in localizing tampered regions, outperforming state-of-the-art techniques. Noise, Gaussian blur, and JPEG compression are post-processing threats that CMV2U-Net has successfully resisted.</p>\",\"PeriodicalId\":94080,\"journal\":{\"name\":\"Journal of forensic sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of forensic sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/1556-4029.70033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1556-4029.70033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMV2U-Net: A U-shaped network with edge-weighted features for detecting and localizing image splicing.

The practice of cutting and pasting portions of one image into another, known as "image splicing," is commonplace in the field of image manipulation. Image splicing detection using deep learning has been a hot research topic for the past few years. However, there are two problems with the way deep learning is currently implemented: first, it is not good enough for feature fusion, and second, it uses only simple models for feature extraction and encoding, which makes the models vulnerable to overfitting. To tackle these problems, this research proposes CMV2U-Net, an edge-weighted U-shaped network-based image splicing forgery localization approach. An initial step is the development of a feature extraction module that can process two streams of input images simultaneously, allowing for the simultaneous extraction of semantically connected and semantically agnostic features. One characteristic is that a hierarchical fusion approach has been devised to prevent data loss in shallow features that are either semantically related or semantically irrelevant. This approach implements a channel attention mechanism to monitor manipulation trajectories involving multiple levels. Extensive trials on numerous public datasets prove that CMV2U-Net provides high AUC and F1 in localizing tampered regions, outperforming state-of-the-art techniques. Noise, Gaussian blur, and JPEG compression are post-processing threats that CMV2U-Net has successfully resisted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信