{"title":"Maresin-1 会损害皮肤伤口愈合反应。","authors":"Reiko Hara, Natsuko Saito-Sasaki, Yu Sawada","doi":"10.1093/immhor/vlaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Maresin-1 is a derivative of docosahexaenoic acid with strong anti-inflammatory action in various disease models. However, these effects may not always be beneficial. In instances like cutaneous diseases in which wound healing is important, inflammation is required. In this study, we investigated the effects of maresin-1 on cutaneous wound healing and found that wound healing was significantly delayed in maresin-1-treated mouse skin in the early phase of wound healing on days 1 to 3. Histological analyses revealed that maresin-1 suppressed re-epithelization in the wounded skin. Despite the direct influence of maresin-1 on keratinocyte migration, a comprehensive quantitative polymerase chain reaction analysis revealed that maresin-1-treated wound skin showed a decrease in tumor necrosis factor α, indicating that maresin-1 indirectly suppresses keratinocyte migration mediated by reduced tumor necrosis factor α derived from wounded skin, leading to delayed wound healing.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"9 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964490/pdf/","citationCount":"0","resultStr":"{\"title\":\"Maresin-1 impairs cutaneous wound healing response.\",\"authors\":\"Reiko Hara, Natsuko Saito-Sasaki, Yu Sawada\",\"doi\":\"10.1093/immhor/vlaf010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maresin-1 is a derivative of docosahexaenoic acid with strong anti-inflammatory action in various disease models. However, these effects may not always be beneficial. In instances like cutaneous diseases in which wound healing is important, inflammation is required. In this study, we investigated the effects of maresin-1 on cutaneous wound healing and found that wound healing was significantly delayed in maresin-1-treated mouse skin in the early phase of wound healing on days 1 to 3. Histological analyses revealed that maresin-1 suppressed re-epithelization in the wounded skin. Despite the direct influence of maresin-1 on keratinocyte migration, a comprehensive quantitative polymerase chain reaction analysis revealed that maresin-1-treated wound skin showed a decrease in tumor necrosis factor α, indicating that maresin-1 indirectly suppresses keratinocyte migration mediated by reduced tumor necrosis factor α derived from wounded skin, leading to delayed wound healing.</p>\",\"PeriodicalId\":94037,\"journal\":{\"name\":\"ImmunoHorizons\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964490/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoHorizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/immhor/vlaf010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immhor/vlaf010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Maresin-1 is a derivative of docosahexaenoic acid with strong anti-inflammatory action in various disease models. However, these effects may not always be beneficial. In instances like cutaneous diseases in which wound healing is important, inflammation is required. In this study, we investigated the effects of maresin-1 on cutaneous wound healing and found that wound healing was significantly delayed in maresin-1-treated mouse skin in the early phase of wound healing on days 1 to 3. Histological analyses revealed that maresin-1 suppressed re-epithelization in the wounded skin. Despite the direct influence of maresin-1 on keratinocyte migration, a comprehensive quantitative polymerase chain reaction analysis revealed that maresin-1-treated wound skin showed a decrease in tumor necrosis factor α, indicating that maresin-1 indirectly suppresses keratinocyte migration mediated by reduced tumor necrosis factor α derived from wounded skin, leading to delayed wound healing.