Sarah Hijazi, Monica Cozzi, Somayeh Asgharpour, Omar De Bei, Serena Faggiano, Francesco Marchesani, Luca Ronda, Marialaura Marchetti, Eleonora Gianquinto, Mariacristina Failla, Gauthier Trèves, Loretta Lazzarato, Francesca Spyrakis, Barbara Campanini, Emanuela Frangipani, Stefano Bettati
{"title":"一流的 SbnA 抑制剂可减少金黄色葡萄球菌嗜苷酸盐的产生。","authors":"Sarah Hijazi, Monica Cozzi, Somayeh Asgharpour, Omar De Bei, Serena Faggiano, Francesco Marchesani, Luca Ronda, Marialaura Marchetti, Eleonora Gianquinto, Mariacristina Failla, Gauthier Trèves, Loretta Lazzarato, Francesca Spyrakis, Barbara Campanini, Emanuela Frangipani, Stefano Bettati","doi":"10.1111/febs.70076","DOIUrl":null,"url":null,"abstract":"<p><p>Siderophore production, along with heme scavenging by hemophores, is one of the main mechanisms exploited by bacteria to achieve an adequate iron supply. Staphylococcus aureus produces two main siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), with the latter produced only by the most invasive, coagulase-positive S. aureus strains. Along the seven steps of the SB biosynthetic pathway, N-(2-amino-2-carboxyethyl)-l-glutamate synthase (SbnA) catalyzes the crucial formation of the intermediate N-(2-amino-2-carboxyethyl)-l-glutamate from O-phospho-L-serine and glutamate. Our functional characterization of the enzyme highlighted that citrate inhibits SbnA with an inhibitory constant (K<sub>i</sub>) in the order of magnitude of the physiological concentration of the metabolite. We searched for inhibitors of SbnA within citrate analogues and identified 2-phenylmaleic acid (2-PhMA) as the best hit, with a K<sub>i</sub> of 16 ± 2 μm and a mechanism of inhibition that is competitive with O-phospho-L-serine for active site binding. The methyl ester of 2-PhMA at a 2 mm concentration was effective in inhibiting siderophore biosynthesis in S. aureus. These results pave the way for the discovery of promising inhibitors of iron acquisition that might find application as innovative antimicrobials.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-in-class inhibitors of SbnA reduce siderophore production in Staphylococcus aureus.\",\"authors\":\"Sarah Hijazi, Monica Cozzi, Somayeh Asgharpour, Omar De Bei, Serena Faggiano, Francesco Marchesani, Luca Ronda, Marialaura Marchetti, Eleonora Gianquinto, Mariacristina Failla, Gauthier Trèves, Loretta Lazzarato, Francesca Spyrakis, Barbara Campanini, Emanuela Frangipani, Stefano Bettati\",\"doi\":\"10.1111/febs.70076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Siderophore production, along with heme scavenging by hemophores, is one of the main mechanisms exploited by bacteria to achieve an adequate iron supply. Staphylococcus aureus produces two main siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), with the latter produced only by the most invasive, coagulase-positive S. aureus strains. Along the seven steps of the SB biosynthetic pathway, N-(2-amino-2-carboxyethyl)-l-glutamate synthase (SbnA) catalyzes the crucial formation of the intermediate N-(2-amino-2-carboxyethyl)-l-glutamate from O-phospho-L-serine and glutamate. Our functional characterization of the enzyme highlighted that citrate inhibits SbnA with an inhibitory constant (K<sub>i</sub>) in the order of magnitude of the physiological concentration of the metabolite. We searched for inhibitors of SbnA within citrate analogues and identified 2-phenylmaleic acid (2-PhMA) as the best hit, with a K<sub>i</sub> of 16 ± 2 μm and a mechanism of inhibition that is competitive with O-phospho-L-serine for active site binding. The methyl ester of 2-PhMA at a 2 mm concentration was effective in inhibiting siderophore biosynthesis in S. aureus. These results pave the way for the discovery of promising inhibitors of iron acquisition that might find application as innovative antimicrobials.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
铁载体的产生,以及血红素的清除,是细菌利用的主要机制之一,以实现足够的铁供应。金黄色葡萄球菌产生两种主要的铁载体,葡萄铁蛋白A (SA)和葡萄铁蛋白B (SB),后者仅由侵袭性最强的凝固酶阳性金黄色葡萄球菌菌株产生。在SB生物合成途径的7个步骤中,N-(2-氨基-2-羧乙基)-l-谷氨酸合成酶(SbnA)催化o-磷酸-l-丝氨酸和谷氨酸形成中间体N-(2-氨基-2-羧乙基)-l-谷氨酸。我们对该酶的功能表征强调,柠檬酸盐抑制SbnA的抑制常数(Ki)与代谢产物的生理浓度成数量级。我们在柠檬酸类似物中寻找SbnA的抑制剂,并确定2-苯基马来酸(2- phma)为最佳打击,Ki为16±2 μm,抑制机制与o-磷酸- l -丝氨酸竞争活性位点结合。2- phma甲酯在2 mm浓度下对金黄色葡萄球菌的铁载体生物合成有抑制作用。这些结果为发现有希望的铁获取抑制剂铺平了道路,这些抑制剂可能会被用作创新的抗菌剂。
First-in-class inhibitors of SbnA reduce siderophore production in Staphylococcus aureus.
Siderophore production, along with heme scavenging by hemophores, is one of the main mechanisms exploited by bacteria to achieve an adequate iron supply. Staphylococcus aureus produces two main siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), with the latter produced only by the most invasive, coagulase-positive S. aureus strains. Along the seven steps of the SB biosynthetic pathway, N-(2-amino-2-carboxyethyl)-l-glutamate synthase (SbnA) catalyzes the crucial formation of the intermediate N-(2-amino-2-carboxyethyl)-l-glutamate from O-phospho-L-serine and glutamate. Our functional characterization of the enzyme highlighted that citrate inhibits SbnA with an inhibitory constant (Ki) in the order of magnitude of the physiological concentration of the metabolite. We searched for inhibitors of SbnA within citrate analogues and identified 2-phenylmaleic acid (2-PhMA) as the best hit, with a Ki of 16 ± 2 μm and a mechanism of inhibition that is competitive with O-phospho-L-serine for active site binding. The methyl ester of 2-PhMA at a 2 mm concentration was effective in inhibiting siderophore biosynthesis in S. aureus. These results pave the way for the discovery of promising inhibitors of iron acquisition that might find application as innovative antimicrobials.