Manuel Delgado-Baquerizo, Brajesh K. Singh, Yu-Rong Liu, Tadeo Sáez-Sandino, Claudia Coleine, Miriam Muñoz-Rojas, Felipe Bastida, Pankaj Trivedi
{"title":"为SynCom的成功整合生态和进化框架。","authors":"Manuel Delgado-Baquerizo, Brajesh K. Singh, Yu-Rong Liu, Tadeo Sáez-Sandino, Claudia Coleine, Miriam Muñoz-Rojas, Felipe Bastida, Pankaj Trivedi","doi":"10.1111/nph.70112","DOIUrl":null,"url":null,"abstract":"<p>Use of synthetic microbial communities (SynComs) is a promising approach that harnesses nature-based solutions to support soil fertility and food security, mitigate climate change impacts, and restore terrestrial ecosystems. Several microbial products are in the market, and many others are at different stages of development and commercialization. Yet, we are still far from being able to fully harness the potential and successful applications of such biotechnological tools. The limited field efficiency and efficacy of SynComs have significantly constrained commercial opportunities, resulting in market growth falling below expectations. To overcome these challenges and manage expectations, it is critical to address current limitations, failures, and potential environmental consequences of SynComs. In this Viewpoint, we explore how using multiple eco-evolutionary theories can inform SynCom design and success. We further discuss the current status of SynComs and identify the next steps needed to develop and deploy the next generation of tools to boost their ability to support multiple ecosystem services, including food security and environmental sustainability.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"246 5","pages":"1922-1933"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.70112","citationCount":"0","resultStr":"{\"title\":\"Integrating ecological and evolutionary frameworks for SynCom success\",\"authors\":\"Manuel Delgado-Baquerizo, Brajesh K. Singh, Yu-Rong Liu, Tadeo Sáez-Sandino, Claudia Coleine, Miriam Muñoz-Rojas, Felipe Bastida, Pankaj Trivedi\",\"doi\":\"10.1111/nph.70112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Use of synthetic microbial communities (SynComs) is a promising approach that harnesses nature-based solutions to support soil fertility and food security, mitigate climate change impacts, and restore terrestrial ecosystems. Several microbial products are in the market, and many others are at different stages of development and commercialization. Yet, we are still far from being able to fully harness the potential and successful applications of such biotechnological tools. The limited field efficiency and efficacy of SynComs have significantly constrained commercial opportunities, resulting in market growth falling below expectations. To overcome these challenges and manage expectations, it is critical to address current limitations, failures, and potential environmental consequences of SynComs. In this Viewpoint, we explore how using multiple eco-evolutionary theories can inform SynCom design and success. We further discuss the current status of SynComs and identify the next steps needed to develop and deploy the next generation of tools to boost their ability to support multiple ecosystem services, including food security and environmental sustainability.</p>\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"246 5\",\"pages\":\"1922-1933\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.70112\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/nph.70112\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.70112","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Integrating ecological and evolutionary frameworks for SynCom success
Use of synthetic microbial communities (SynComs) is a promising approach that harnesses nature-based solutions to support soil fertility and food security, mitigate climate change impacts, and restore terrestrial ecosystems. Several microbial products are in the market, and many others are at different stages of development and commercialization. Yet, we are still far from being able to fully harness the potential and successful applications of such biotechnological tools. The limited field efficiency and efficacy of SynComs have significantly constrained commercial opportunities, resulting in market growth falling below expectations. To overcome these challenges and manage expectations, it is critical to address current limitations, failures, and potential environmental consequences of SynComs. In this Viewpoint, we explore how using multiple eco-evolutionary theories can inform SynCom design and success. We further discuss the current status of SynComs and identify the next steps needed to develop and deploy the next generation of tools to boost their ability to support multiple ecosystem services, including food security and environmental sustainability.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.