IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-04-02 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0319078
Niloy Das, Md Bipul Hossain, Apurba Adhikary, Avi Deb Raha, Yu Qiao, Md Mehedi Hassan, Anupam Kumar Bairagi
{"title":"Enlightened prognosis: Hepatitis prediction with an explainable machine learning approach.","authors":"Niloy Das, Md Bipul Hossain, Apurba Adhikary, Avi Deb Raha, Yu Qiao, Md Mehedi Hassan, Anupam Kumar Bairagi","doi":"10.1371/journal.pone.0319078","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis is a widespread inflammatory condition of the liver, presenting a formidable global health challenge. Accurate and timely detection of hepatitis is crucial for effective patient management, yet existing methods exhibit limitations that underscore the need for innovative approaches. Early-stage detection of hepatitis is now possible with the recent adoption of machine learning and deep learning approaches. With this in mind, the study investigates the use of traditional machine learning models, specifically classifiers such as logistic regression, support vector machines (SVM), decision trees, random forest, multilayer perceptron (MLP), and other models, to predict hepatitis infections. After extensive data preprocessing including outlier detection, dataset balancing, and feature engineering, we evaluated the performance of these models. We explored three modeling approaches: machine learning with default hyperparameters, hyperparameter-tuned models using GridSearchCV, and ensemble modeling techniques. The SVM model demonstrated outstanding performance, achieving 99.25% accuracy and a perfect AUC score of 1.00 with consistency in other metrics with 99.27% precision, and 99.24% for both recall and F1-measure. The MLP and Random Forest proved to be in pace with the superior performance of SVM exhibiting an accuracy of 99.00%. To ensure robustness, we employed a 5-fold cross-validation technique. For deeper insight into model interpretability and validation, we employed an explainability analysis of our best-performed models to identify the most effective feature for hepatitis detection. Our proposed model, particularly SVM, exhibits better prediction performance regarding different performance metrics compared to existing literature.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 4","pages":"e0319078"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964459/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0319078","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

肝炎是一种广泛存在的肝脏炎症,给全球健康带来了严峻的挑战。准确、及时地检测肝炎对有效管理患者至关重要,然而现有方法存在局限性,这凸显了对创新方法的需求。随着最近机器学习和深度学习方法的采用,肝炎的早期检测现在已成为可能。有鉴于此,本研究调查了传统机器学习模型的使用情况,特别是分类器,如逻辑回归、支持向量机(SVM)、决策树、随机森林、多层感知器(MLP)和其他模型,以预测肝炎感染。经过离群点检测、数据集平衡和特征工程等大量数据预处理后,我们对这些模型的性能进行了评估。我们探索了三种建模方法:使用默认超参数的机器学习、使用 GridSearchCV 的超参数调整模型以及集合建模技术。SVM 模型表现出色,准确率达到 99.25%,AUC 得分为 1.00,在其他指标上也保持一致,准确率为 99.27%,召回率和 F1 测量值均为 99.24%。事实证明,MLP 和随机森林与 SVM 的卓越性能不相上下,准确率达到 99.00%。为确保稳健性,我们采用了 5 倍交叉验证技术。为了深入了解模型的可解释性和验证性,我们对表现最好的模型进行了可解释性分析,以确定检测肝炎最有效的特征。与现有文献相比,我们提出的模型,尤其是 SVM,在不同的性能指标上都表现出了更好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enlightened prognosis: Hepatitis prediction with an explainable machine learning approach.

Hepatitis is a widespread inflammatory condition of the liver, presenting a formidable global health challenge. Accurate and timely detection of hepatitis is crucial for effective patient management, yet existing methods exhibit limitations that underscore the need for innovative approaches. Early-stage detection of hepatitis is now possible with the recent adoption of machine learning and deep learning approaches. With this in mind, the study investigates the use of traditional machine learning models, specifically classifiers such as logistic regression, support vector machines (SVM), decision trees, random forest, multilayer perceptron (MLP), and other models, to predict hepatitis infections. After extensive data preprocessing including outlier detection, dataset balancing, and feature engineering, we evaluated the performance of these models. We explored three modeling approaches: machine learning with default hyperparameters, hyperparameter-tuned models using GridSearchCV, and ensemble modeling techniques. The SVM model demonstrated outstanding performance, achieving 99.25% accuracy and a perfect AUC score of 1.00 with consistency in other metrics with 99.27% precision, and 99.24% for both recall and F1-measure. The MLP and Random Forest proved to be in pace with the superior performance of SVM exhibiting an accuracy of 99.00%. To ensure robustness, we employed a 5-fold cross-validation technique. For deeper insight into model interpretability and validation, we employed an explainability analysis of our best-performed models to identify the most effective feature for hepatitis detection. Our proposed model, particularly SVM, exhibits better prediction performance regarding different performance metrics compared to existing literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信