刺胞动物与鞭毛虫共生的稳定性主要取决于共生体细胞周期的停滞。

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lucy M Gorman, Trevor R Tivey, Evan H Raymond, Immy A Ashley, Clinton A Oakley, Arthur R Grossman, Virginia M Weis, Simon K Davy
{"title":"刺胞动物与鞭毛虫共生的稳定性主要取决于共生体细胞周期的停滞。","authors":"Lucy M Gorman, Trevor R Tivey, Evan H Raymond, Immy A Ashley, Clinton A Oakley, Arthur R Grossman, Virginia M Weis, Simon K Davy","doi":"10.1073/pnas.2412396122","DOIUrl":null,"url":null,"abstract":"<p><p>The cnidarian-dinoflagellate symbiosis relies on the regulation of resident symbiont populations to maintain biomass stability; however, the relative importance of host regulatory mechanisms [cell-cycle arrest (CC), apoptosis (AP), autophagy (AU), and expulsion (EX)] during symbiosis onset and maintenance is largely unknown. Here, we inoculated a symbiont-free (aposymbiotic) model cnidarian (<i>Exaiptasia diaphana</i>: \"Aiptasia\") with either its native symbiont <i>Breviolum minutum</i> or one of three non-native symbionts: <i>Symbiodinium microadriaticum</i>, <i>Cladocopium goreaui,</i> and <i>Durusdinium trenchii</i>. We then measured and compared host AP, host AU, symbiont EX, and symbiont cell-cycle phase for up to a year with these different symbionts and used these discrete measurements to inform comparative models of symbiont population regulation. Our models showed a general pattern, where regulation through AP and AU is reduced after onset, followed by an overshoot of the symbiont population that requires a strong regulatory response, dealt with by strong CC and increased EX. As colonization progresses into symbiosis maintenance, CC remains crucial for achieving steady-state symbiont populations, with our models estimating that CC regulates 10-fold more cells (60 to 90%) relative to the other mechanisms. Notably though, our models also revealed that <i>D. trenchii</i> is less tightly regulated than <i>B. minutum</i>, consistent with <i>D. trenchii's</i> reputation as a suboptimal partner for this cnidarian. Overall, our models suggest that single regulatory mechanisms do not accurately replicate observed symbiont colonization patterns, reflecting the importance of all mechanisms working concomitantly. This ultimately sheds light on the cell biology underpinning the stability of this ecologically significant symbiosis.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 14","pages":"e2412396122"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002341/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stability of the cnidarian-dinoflagellate symbiosis is primarily determined by symbiont cell-cycle arrest.\",\"authors\":\"Lucy M Gorman, Trevor R Tivey, Evan H Raymond, Immy A Ashley, Clinton A Oakley, Arthur R Grossman, Virginia M Weis, Simon K Davy\",\"doi\":\"10.1073/pnas.2412396122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cnidarian-dinoflagellate symbiosis relies on the regulation of resident symbiont populations to maintain biomass stability; however, the relative importance of host regulatory mechanisms [cell-cycle arrest (CC), apoptosis (AP), autophagy (AU), and expulsion (EX)] during symbiosis onset and maintenance is largely unknown. Here, we inoculated a symbiont-free (aposymbiotic) model cnidarian (<i>Exaiptasia diaphana</i>: \\\"Aiptasia\\\") with either its native symbiont <i>Breviolum minutum</i> or one of three non-native symbionts: <i>Symbiodinium microadriaticum</i>, <i>Cladocopium goreaui,</i> and <i>Durusdinium trenchii</i>. We then measured and compared host AP, host AU, symbiont EX, and symbiont cell-cycle phase for up to a year with these different symbionts and used these discrete measurements to inform comparative models of symbiont population regulation. Our models showed a general pattern, where regulation through AP and AU is reduced after onset, followed by an overshoot of the symbiont population that requires a strong regulatory response, dealt with by strong CC and increased EX. As colonization progresses into symbiosis maintenance, CC remains crucial for achieving steady-state symbiont populations, with our models estimating that CC regulates 10-fold more cells (60 to 90%) relative to the other mechanisms. Notably though, our models also revealed that <i>D. trenchii</i> is less tightly regulated than <i>B. minutum</i>, consistent with <i>D. trenchii's</i> reputation as a suboptimal partner for this cnidarian. Overall, our models suggest that single regulatory mechanisms do not accurately replicate observed symbiont colonization patterns, reflecting the importance of all mechanisms working concomitantly. This ultimately sheds light on the cell biology underpinning the stability of this ecologically significant symbiosis.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 14\",\"pages\":\"e2412396122\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2412396122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2412396122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

刺胞-鞭毛藻共生依赖于常驻共生体种群的调控来维持生物量的稳定性;然而,宿主调控机制[细胞周期阻滞(CC)、细胞凋亡(AP)、自噬(AU)和驱逐(EX)]在共生发生和维持过程中的相对重要性在很大程度上是未知的。在这里,我们接种了一种无共生(非共生)模式刺胞菌(Exaiptasia diaphana:“Aiptasia”),其本地共生体Breviolum minutum或三种非本地共生体:共生菌microadriaticum, Cladocopium goreaui和Durusdinium trenchii中的一种。然后,我们测量并比较了宿主AP、宿主AU、共生体EX和共生体细胞周期阶段与这些不同的共生体长达一年的时间,并使用这些离散的测量来为共生体种群调节的比较模型提供信息。我们的模型显示了一种普遍的模式,即通过AP和AU进行的调节在开始后减少,随后是共生种群的超调,这需要强有力的调节反应,通过强大的CC和增加的EX来处理。随着定殖进展到共生维持,CC对于实现稳定的共生种群仍然至关重要,我们的模型估计CC调节的细胞比其他机制多10倍(60%至90%)。值得注意的是,我们的模型还显示,D. trenchii受到的调控不如B. minutum严格,这与D. trenchii作为这种刺胞动物的次优伴侣的声誉是一致的。总的来说,我们的模型表明,单一的调节机制并不能准确地复制观察到的共生定植模式,这反映了所有机制协同工作的重要性。这最终揭示了支撑这种生态重要共生稳定性的细胞生物学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of the cnidarian-dinoflagellate symbiosis is primarily determined by symbiont cell-cycle arrest.

The cnidarian-dinoflagellate symbiosis relies on the regulation of resident symbiont populations to maintain biomass stability; however, the relative importance of host regulatory mechanisms [cell-cycle arrest (CC), apoptosis (AP), autophagy (AU), and expulsion (EX)] during symbiosis onset and maintenance is largely unknown. Here, we inoculated a symbiont-free (aposymbiotic) model cnidarian (Exaiptasia diaphana: "Aiptasia") with either its native symbiont Breviolum minutum or one of three non-native symbionts: Symbiodinium microadriaticum, Cladocopium goreaui, and Durusdinium trenchii. We then measured and compared host AP, host AU, symbiont EX, and symbiont cell-cycle phase for up to a year with these different symbionts and used these discrete measurements to inform comparative models of symbiont population regulation. Our models showed a general pattern, where regulation through AP and AU is reduced after onset, followed by an overshoot of the symbiont population that requires a strong regulatory response, dealt with by strong CC and increased EX. As colonization progresses into symbiosis maintenance, CC remains crucial for achieving steady-state symbiont populations, with our models estimating that CC regulates 10-fold more cells (60 to 90%) relative to the other mechanisms. Notably though, our models also revealed that D. trenchii is less tightly regulated than B. minutum, consistent with D. trenchii's reputation as a suboptimal partner for this cnidarian. Overall, our models suggest that single regulatory mechanisms do not accurately replicate observed symbiont colonization patterns, reflecting the importance of all mechanisms working concomitantly. This ultimately sheds light on the cell biology underpinning the stability of this ecologically significant symbiosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信