{"title":"一种结合深度卷积和空间关注的紧凑深度学习方法,用于植物病害分类。","authors":"Amreen Batool, Jisoo Kim, Yung-Cheol Byun","doi":"10.1186/s13007-025-01325-4","DOIUrl":null,"url":null,"abstract":"<p><p>Plant leaf diseases significantly threaten agricultural productivity and global food security, emphasizing the importance of early and accurate detection and effective crop health management. Current deep learning models, often used for plant disease classification, have limitations in capturing intricate features such as texture, shape, and color of plant leaves. Furthermore, many of these models are computationally expensive and less suitable for deployment in resource-constrained environments such as farms and rural areas. We propose a novel Lightweight Deep Learning model, Depthwise Separable Convolution with Spatial Attention (LWDSC-SA), designed to address limitations and enhance feature extraction while maintaining computational efficiency. By integrating spatial attention and depthwise separable convolution, the LWDSC-SA model improves the ability to detect and classify plant diseases. In our comprehensive evaluation using the PlantVillage dataset, which consists of 38 classes and 55,000 images from 14 plant species, the LWDSC-SA model achieved 98.7% accuracy. It presents a substantial improvement over MobileNet by 5.25%, MobileNetV2 by 4.50%, AlexNet by 7.40%, and VGGNet16 by 5.95%. Furthermore, to validate its robustness and generalizability, we employed K-fold cross-validation K=5, which demonstrated consistently high performance, with an average accuracy of 98.58%, precision of 98.30%, recall of 98.90%, and F1 score of 98.58%. These results highlight the superior performance of the proposed model, demonstrating its ability to outperform state-of-the-art models in terms of accuracy while remaining lightweight and efficient. This research offers a promising solution for real-world agricultural applications, enabling effective plant disease detection in resource-limited settings and contributing to more sustainable agricultural practices.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"48"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966804/pdf/","citationCount":"0","resultStr":"{\"title\":\"A compact deep learning approach integrating depthwise convolutions and spatial attention for plant disease classification.\",\"authors\":\"Amreen Batool, Jisoo Kim, Yung-Cheol Byun\",\"doi\":\"10.1186/s13007-025-01325-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant leaf diseases significantly threaten agricultural productivity and global food security, emphasizing the importance of early and accurate detection and effective crop health management. Current deep learning models, often used for plant disease classification, have limitations in capturing intricate features such as texture, shape, and color of plant leaves. Furthermore, many of these models are computationally expensive and less suitable for deployment in resource-constrained environments such as farms and rural areas. We propose a novel Lightweight Deep Learning model, Depthwise Separable Convolution with Spatial Attention (LWDSC-SA), designed to address limitations and enhance feature extraction while maintaining computational efficiency. By integrating spatial attention and depthwise separable convolution, the LWDSC-SA model improves the ability to detect and classify plant diseases. In our comprehensive evaluation using the PlantVillage dataset, which consists of 38 classes and 55,000 images from 14 plant species, the LWDSC-SA model achieved 98.7% accuracy. It presents a substantial improvement over MobileNet by 5.25%, MobileNetV2 by 4.50%, AlexNet by 7.40%, and VGGNet16 by 5.95%. Furthermore, to validate its robustness and generalizability, we employed K-fold cross-validation K=5, which demonstrated consistently high performance, with an average accuracy of 98.58%, precision of 98.30%, recall of 98.90%, and F1 score of 98.58%. These results highlight the superior performance of the proposed model, demonstrating its ability to outperform state-of-the-art models in terms of accuracy while remaining lightweight and efficient. This research offers a promising solution for real-world agricultural applications, enabling effective plant disease detection in resource-limited settings and contributing to more sustainable agricultural practices.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"48\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01325-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01325-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A compact deep learning approach integrating depthwise convolutions and spatial attention for plant disease classification.
Plant leaf diseases significantly threaten agricultural productivity and global food security, emphasizing the importance of early and accurate detection and effective crop health management. Current deep learning models, often used for plant disease classification, have limitations in capturing intricate features such as texture, shape, and color of plant leaves. Furthermore, many of these models are computationally expensive and less suitable for deployment in resource-constrained environments such as farms and rural areas. We propose a novel Lightweight Deep Learning model, Depthwise Separable Convolution with Spatial Attention (LWDSC-SA), designed to address limitations and enhance feature extraction while maintaining computational efficiency. By integrating spatial attention and depthwise separable convolution, the LWDSC-SA model improves the ability to detect and classify plant diseases. In our comprehensive evaluation using the PlantVillage dataset, which consists of 38 classes and 55,000 images from 14 plant species, the LWDSC-SA model achieved 98.7% accuracy. It presents a substantial improvement over MobileNet by 5.25%, MobileNetV2 by 4.50%, AlexNet by 7.40%, and VGGNet16 by 5.95%. Furthermore, to validate its robustness and generalizability, we employed K-fold cross-validation K=5, which demonstrated consistently high performance, with an average accuracy of 98.58%, precision of 98.30%, recall of 98.90%, and F1 score of 98.58%. These results highlight the superior performance of the proposed model, demonstrating its ability to outperform state-of-the-art models in terms of accuracy while remaining lightweight and efficient. This research offers a promising solution for real-world agricultural applications, enabling effective plant disease detection in resource-limited settings and contributing to more sustainable agricultural practices.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.