{"title":"脑肽修饰外泌体介导的药物传递系统治疗阿霉素肾病。","authors":"Lishan Tan PhD. , Huisong Zhou M.M. , Zhiwei Lai M.M. , Guang Yang PhD. , Fengping Zheng PhD. , Fei Xiao M.M. , Zuying Xiong PhD. , Xiaoyan Huang PhD. , Zibo Xiong M.M.","doi":"10.1016/j.nano.2025.102819","DOIUrl":null,"url":null,"abstract":"<div><div>Mitigation of adriamycin (ADR)-induced nephropathy remains a significant challenge in clinical management. Brain-targeted administration of losartan demonstrates comparable nephroprotective effects at a 1:500 concentration relative to gavage administration. This study established an exosome-based nano-delivery platform (ExoACP) to reduce drug dosage for alleviating ADR-induced nephropathy. The platform was rigorously tested for toxicity and blood-brain barrier penetration. Additionally, the role and possible mechanism of ExoACP-Los in alleviating ADR-induced nephropathy in mice were investigated. ExoACP showed enhanced penetration in brain microvascular endothelial cells, with a 7.20-fold increase in uptake. In the ADR model, ExoACP-Los exhibited anti-inflammatory and anti-fibrotic effects by downregulating the renin-angiotensin system, reducing extracellular matrix deposition by nearly half. These findings suggest ExoACP-Los can alleviate ADR-induced nephropathy by enhancing targeted drug delivery to the brain while reducing losartan. Overall, ExoACP holds significant potential for future clinical applications in chronic nephropathy.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"66 ","pages":"Article 102819"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain peptides modified exosome-mediated drug delivery system for adriamycin-induced nephropathy treatment\",\"authors\":\"Lishan Tan PhD. , Huisong Zhou M.M. , Zhiwei Lai M.M. , Guang Yang PhD. , Fengping Zheng PhD. , Fei Xiao M.M. , Zuying Xiong PhD. , Xiaoyan Huang PhD. , Zibo Xiong M.M.\",\"doi\":\"10.1016/j.nano.2025.102819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mitigation of adriamycin (ADR)-induced nephropathy remains a significant challenge in clinical management. Brain-targeted administration of losartan demonstrates comparable nephroprotective effects at a 1:500 concentration relative to gavage administration. This study established an exosome-based nano-delivery platform (ExoACP) to reduce drug dosage for alleviating ADR-induced nephropathy. The platform was rigorously tested for toxicity and blood-brain barrier penetration. Additionally, the role and possible mechanism of ExoACP-Los in alleviating ADR-induced nephropathy in mice were investigated. ExoACP showed enhanced penetration in brain microvascular endothelial cells, with a 7.20-fold increase in uptake. In the ADR model, ExoACP-Los exhibited anti-inflammatory and anti-fibrotic effects by downregulating the renin-angiotensin system, reducing extracellular matrix deposition by nearly half. These findings suggest ExoACP-Los can alleviate ADR-induced nephropathy by enhancing targeted drug delivery to the brain while reducing losartan. Overall, ExoACP holds significant potential for future clinical applications in chronic nephropathy.</div></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"66 \",\"pages\":\"Article 102819\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S154996342500019X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S154996342500019X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Brain peptides modified exosome-mediated drug delivery system for adriamycin-induced nephropathy treatment
Mitigation of adriamycin (ADR)-induced nephropathy remains a significant challenge in clinical management. Brain-targeted administration of losartan demonstrates comparable nephroprotective effects at a 1:500 concentration relative to gavage administration. This study established an exosome-based nano-delivery platform (ExoACP) to reduce drug dosage for alleviating ADR-induced nephropathy. The platform was rigorously tested for toxicity and blood-brain barrier penetration. Additionally, the role and possible mechanism of ExoACP-Los in alleviating ADR-induced nephropathy in mice were investigated. ExoACP showed enhanced penetration in brain microvascular endothelial cells, with a 7.20-fold increase in uptake. In the ADR model, ExoACP-Los exhibited anti-inflammatory and anti-fibrotic effects by downregulating the renin-angiotensin system, reducing extracellular matrix deposition by nearly half. These findings suggest ExoACP-Los can alleviate ADR-induced nephropathy by enhancing targeted drug delivery to the brain while reducing losartan. Overall, ExoACP holds significant potential for future clinical applications in chronic nephropathy.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.