脉冲激光在冰块中合成独立Pt单原子以增强g-C3N4光催化析氢。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yongming Fu, Qianyu Lu, Jianhong Wang, Na Sun, Jinjun Gao, Peng Chen, Jizhou Wu, Jie Ma
{"title":"脉冲激光在冰块中合成独立Pt单原子以增强g-C3N4光催化析氢。","authors":"Yongming Fu, Qianyu Lu, Jianhong Wang, Na Sun, Jinjun Gao, Peng Chen, Jizhou Wu, Jie Ma","doi":"10.1039/d5na00043b","DOIUrl":null,"url":null,"abstract":"<p><p>This study reports an innovative synthesis method of a Pt/g-C<sub>3</sub>N<sub>4</sub> single atom catalyst for enhancing photocatalytic hydrogen evolution. The method involves the synthesis of free-standing Pt single atoms within an H<sub>2</sub>PtCl<sub>6</sub> ice block using a pulsed laser reduction process, followed by transferring them onto few-layer g-C<sub>3</sub>N<sub>4</sub> through electrostatic adsorption at low temperature. This approach eliminates the need for high-energy lasers and porous support materials during laser solid-phase synthesis. The photocatalytic activities of Pt/g-C<sub>3</sub>N<sub>4</sub> synthesized under various laser conditions are evaluated to optimize the synthesis parameters. The optimal Pt/g-C<sub>3</sub>N<sub>4</sub> catalyst demonstrates a significantly higher photocatalytic hydrogen evolution capability (320 μmol h<sup>-1</sup>), 129 times that of pure g-C<sub>3</sub>N<sub>4</sub> (2.2 μmol h<sup>-1</sup>). This work expands the laser-solid phase synthesis method, offering a promising route for the production of single atom catalysts with simple operation, clear synthetic pathways, low cost, and environmental friendliness.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959413/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pulsed laser synthesis of free-standing Pt single atoms in an ice block for enhancing photocatalytic hydrogen evolution of g-C<sub>3</sub>N<sub>4</sub>.\",\"authors\":\"Yongming Fu, Qianyu Lu, Jianhong Wang, Na Sun, Jinjun Gao, Peng Chen, Jizhou Wu, Jie Ma\",\"doi\":\"10.1039/d5na00043b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study reports an innovative synthesis method of a Pt/g-C<sub>3</sub>N<sub>4</sub> single atom catalyst for enhancing photocatalytic hydrogen evolution. The method involves the synthesis of free-standing Pt single atoms within an H<sub>2</sub>PtCl<sub>6</sub> ice block using a pulsed laser reduction process, followed by transferring them onto few-layer g-C<sub>3</sub>N<sub>4</sub> through electrostatic adsorption at low temperature. This approach eliminates the need for high-energy lasers and porous support materials during laser solid-phase synthesis. The photocatalytic activities of Pt/g-C<sub>3</sub>N<sub>4</sub> synthesized under various laser conditions are evaluated to optimize the synthesis parameters. The optimal Pt/g-C<sub>3</sub>N<sub>4</sub> catalyst demonstrates a significantly higher photocatalytic hydrogen evolution capability (320 μmol h<sup>-1</sup>), 129 times that of pure g-C<sub>3</sub>N<sub>4</sub> (2.2 μmol h<sup>-1</sup>). This work expands the laser-solid phase synthesis method, offering a promising route for the production of single atom catalysts with simple operation, clear synthetic pathways, low cost, and environmental friendliness.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959413/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00043b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00043b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一种新颖的光催化析氢Pt/g-C3N4单原子催化剂的合成方法。该方法包括使用脉冲激光还原工艺在H2PtCl6冰块中合成独立的Pt单原子,然后通过低温静电吸附将它们转移到几层g-C3N4上。这种方法消除了在激光固相合成过程中对高能激光器和多孔支撑材料的需求。考察了不同激光条件下合成Pt/g-C3N4的光催化活性,优化了合成参数。Pt/g-C3N4催化剂的光催化析氢能力为320 μmol h-1,是纯g-C3N4催化剂(2.2 μmol h-1)的129倍。本研究扩展了激光固相合成方法,为生产操作简单、合成途径清晰、成本低、环境友好的单原子催化剂提供了一条有前景的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pulsed laser synthesis of free-standing Pt single atoms in an ice block for enhancing photocatalytic hydrogen evolution of g-C3N4.

This study reports an innovative synthesis method of a Pt/g-C3N4 single atom catalyst for enhancing photocatalytic hydrogen evolution. The method involves the synthesis of free-standing Pt single atoms within an H2PtCl6 ice block using a pulsed laser reduction process, followed by transferring them onto few-layer g-C3N4 through electrostatic adsorption at low temperature. This approach eliminates the need for high-energy lasers and porous support materials during laser solid-phase synthesis. The photocatalytic activities of Pt/g-C3N4 synthesized under various laser conditions are evaluated to optimize the synthesis parameters. The optimal Pt/g-C3N4 catalyst demonstrates a significantly higher photocatalytic hydrogen evolution capability (320 μmol h-1), 129 times that of pure g-C3N4 (2.2 μmol h-1). This work expands the laser-solid phase synthesis method, offering a promising route for the production of single atom catalysts with simple operation, clear synthetic pathways, low cost, and environmental friendliness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信