女性自行车精英的骨骼健康以受损的皮质和小梁微结构为特征。

IF 4.1 2区 医学 Q1 SPORT SCIENCES
Luuk Hilkens, Melissa S A M Bevers, Caroline E Wyers, Luc J C van Loon, Joop P van den Bergh, Jan-Willem van Dijk
{"title":"女性自行车精英的骨骼健康以受损的皮质和小梁微结构为特征。","authors":"Luuk Hilkens, Melissa S A M Bevers, Caroline E Wyers, Luc J C van Loon, Joop P van den Bergh, Jan-Willem van Dijk","doi":"10.1249/MSS.0000000000003718","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Many elite road-race cyclists have low areal bone mineral density (aBMD) as previously shown by dual-energy X-ray absorptiometry (DXA). However, aBMD provides limited insight into bone quality. Therefore, this cross-sectional study aimed to assess volumetric BMD (vBMD), bone microarchitecture, and bone strength in elite road-race cyclists using high-resolution peripheral computed tomography (HR-pQCT), along with aBMD measured by DXA.</p><p><strong>Methods: </strong>Twenty female elite (Tier 3/ 4) road-race cyclists (21 ± 2 y; BMI 20.8 ± 1.6 kg/m2) had DXA scans at the hip, lumbar spine, and total body to assess aBMD, and HR-pQCT scans at the distal radius and tibia to assess vBMD, bone microarchitecture, and failure load. Z-scores were calculated for all outcomes, with Z-scores <-1 considered as low or impaired. The risk of low energy availability was assessed using the Low Energy Availability in Females Questionnaire (LEAF-Q).</p><p><strong>Results: </strong>Low aBMD was observed in 20%, 25%, 35%, and 10% of the participants at the hip, femoral neck, lumbar spine, and total body, respectively. Low total vBMD was present in 45% and 40% at the distal radius and tibia, respectively. With regard to bone microarchitecture, the tibial cortical area and tibial cortical thickness were low in 40% and 60% of the participants, respectively, and number and thickness of trabeculae at the tibia were low in 40% and 30% of the participants. The impairments were less pronounced at the distal radius. Failure load was low in 15% (radius) and 20% (tibia) of the participants.</p><p><strong>Conclusions: </strong>Along with low aBMD, a substantial proportion of female elite cyclists had impaired bone microarchitecture, mainly characterized by a low cortical area and thickness and low trabecular number and thickness, especially at the distal tibia.</p>","PeriodicalId":18426,"journal":{"name":"Medicine and Science in Sports and Exercise","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone Health of Female Elite Cyclists Is Characterized by Impaired Cortical and Trabecular Microarchitecture.\",\"authors\":\"Luuk Hilkens, Melissa S A M Bevers, Caroline E Wyers, Luc J C van Loon, Joop P van den Bergh, Jan-Willem van Dijk\",\"doi\":\"10.1249/MSS.0000000000003718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Many elite road-race cyclists have low areal bone mineral density (aBMD) as previously shown by dual-energy X-ray absorptiometry (DXA). However, aBMD provides limited insight into bone quality. Therefore, this cross-sectional study aimed to assess volumetric BMD (vBMD), bone microarchitecture, and bone strength in elite road-race cyclists using high-resolution peripheral computed tomography (HR-pQCT), along with aBMD measured by DXA.</p><p><strong>Methods: </strong>Twenty female elite (Tier 3/ 4) road-race cyclists (21 ± 2 y; BMI 20.8 ± 1.6 kg/m2) had DXA scans at the hip, lumbar spine, and total body to assess aBMD, and HR-pQCT scans at the distal radius and tibia to assess vBMD, bone microarchitecture, and failure load. Z-scores were calculated for all outcomes, with Z-scores <-1 considered as low or impaired. The risk of low energy availability was assessed using the Low Energy Availability in Females Questionnaire (LEAF-Q).</p><p><strong>Results: </strong>Low aBMD was observed in 20%, 25%, 35%, and 10% of the participants at the hip, femoral neck, lumbar spine, and total body, respectively. Low total vBMD was present in 45% and 40% at the distal radius and tibia, respectively. With regard to bone microarchitecture, the tibial cortical area and tibial cortical thickness were low in 40% and 60% of the participants, respectively, and number and thickness of trabeculae at the tibia were low in 40% and 30% of the participants. The impairments were less pronounced at the distal radius. Failure load was low in 15% (radius) and 20% (tibia) of the participants.</p><p><strong>Conclusions: </strong>Along with low aBMD, a substantial proportion of female elite cyclists had impaired bone microarchitecture, mainly characterized by a low cortical area and thickness and low trabecular number and thickness, especially at the distal tibia.</p>\",\"PeriodicalId\":18426,\"journal\":{\"name\":\"Medicine and Science in Sports and Exercise\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicine and Science in Sports and Exercise\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1249/MSS.0000000000003718\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine and Science in Sports and Exercise","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1249/MSS.0000000000003718","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bone Health of Female Elite Cyclists Is Characterized by Impaired Cortical and Trabecular Microarchitecture.

Purpose: Many elite road-race cyclists have low areal bone mineral density (aBMD) as previously shown by dual-energy X-ray absorptiometry (DXA). However, aBMD provides limited insight into bone quality. Therefore, this cross-sectional study aimed to assess volumetric BMD (vBMD), bone microarchitecture, and bone strength in elite road-race cyclists using high-resolution peripheral computed tomography (HR-pQCT), along with aBMD measured by DXA.

Methods: Twenty female elite (Tier 3/ 4) road-race cyclists (21 ± 2 y; BMI 20.8 ± 1.6 kg/m2) had DXA scans at the hip, lumbar spine, and total body to assess aBMD, and HR-pQCT scans at the distal radius and tibia to assess vBMD, bone microarchitecture, and failure load. Z-scores were calculated for all outcomes, with Z-scores <-1 considered as low or impaired. The risk of low energy availability was assessed using the Low Energy Availability in Females Questionnaire (LEAF-Q).

Results: Low aBMD was observed in 20%, 25%, 35%, and 10% of the participants at the hip, femoral neck, lumbar spine, and total body, respectively. Low total vBMD was present in 45% and 40% at the distal radius and tibia, respectively. With regard to bone microarchitecture, the tibial cortical area and tibial cortical thickness were low in 40% and 60% of the participants, respectively, and number and thickness of trabeculae at the tibia were low in 40% and 30% of the participants. The impairments were less pronounced at the distal radius. Failure load was low in 15% (radius) and 20% (tibia) of the participants.

Conclusions: Along with low aBMD, a substantial proportion of female elite cyclists had impaired bone microarchitecture, mainly characterized by a low cortical area and thickness and low trabecular number and thickness, especially at the distal tibia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
4.90%
发文量
2568
审稿时长
1 months
期刊介绍: Medicine & Science in Sports & Exercise® features original investigations, clinical studies, and comprehensive reviews on current topics in sports medicine and exercise science. With this leading multidisciplinary journal, exercise physiologists, physiatrists, physical therapists, team physicians, and athletic trainers get a vital exchange of information from basic and applied science, medicine, education, and allied health fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信