高分辨率 EPI 中的短期梯度缺陷会导致模糊波纹伪影。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Laurentius Renzo Huber, Rüdiger Stirnberg, A Tyler Morgan, David A Feinberg, Philipp Ehses, Lasse Knudsen, Omer Faruk Gulban, Kenshu Koiso, Isabel Gephart, Stephanie Swegle, Susan G Wardle, Andrew S Persichetti, Alexander J S Beckett, Tony Stöcker, Nicolas Boulant, Benedikt A Poser, Peter A Bandettini
{"title":"高分辨率 EPI 中的短期梯度缺陷会导致模糊波纹伪影。","authors":"Laurentius Renzo Huber, Rüdiger Stirnberg, A Tyler Morgan, David A Feinberg, Philipp Ehses, Lasse Knudsen, Omer Faruk Gulban, Kenshu Koiso, Isabel Gephart, Stephanie Swegle, Susan G Wardle, Andrew S Persichetti, Alexander J S Beckett, Tony Stöcker, Nicolas Boulant, Benedikt A Poser, Peter A Bandettini","doi":"10.1002/mrm.30489","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>High-resolution fMRI is a rapidly growing research field focused on capturing functional signal changes across cortical layers. However, the data acquisition is limited by low spatial frequency EPI artifacts; termed here as Fuzzy Ripples. These artifacts limit the practical applicability of acquisition protocols with higher spatial resolution, faster acquisition speed, and they challenge imaging in inferior regions of the brain.</p><p><strong>Methods: </strong>We characterize Fuzzy Ripple artifacts across commonly used sequences and distinguish them from conventional EPI Nyquist ghosts and off-resonance effects. To investigate their origin, we employ dual-polarity readouts.</p><p><strong>Results: </strong>Our findings indicate that Fuzzy Ripples are primarily caused by readout-specific imperfections in k-space trajectories, which can be exacerbated by short-term eddy current, and by inductive coupling between third-order shims and readout gradients. We also find that these artifacts can be mitigated through complex-valued averaging of dual-polarity EPI or by disconnecting the third-order shim coils.</p><p><strong>Conclusion: </strong>The proposed mitigation strategies allow overcoming current limitations in layer-fMRI protocols: Achieving resolutions beyond 0.8 mm is feasible, and even at 3T, we achieved 0.53 mm voxel functional connectivity mapping. Sub-millimeter sampling acceleration can be increased to allow sub-second TRs and laminar whole brain protocols with up to GRAPPA 8. Sub-millimeter fMRI is achievable in lower brain areas, including the cerebellum.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term gradient imperfections in high-resolution EPI lead to Fuzzy Ripple artifacts.\",\"authors\":\"Laurentius Renzo Huber, Rüdiger Stirnberg, A Tyler Morgan, David A Feinberg, Philipp Ehses, Lasse Knudsen, Omer Faruk Gulban, Kenshu Koiso, Isabel Gephart, Stephanie Swegle, Susan G Wardle, Andrew S Persichetti, Alexander J S Beckett, Tony Stöcker, Nicolas Boulant, Benedikt A Poser, Peter A Bandettini\",\"doi\":\"10.1002/mrm.30489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>High-resolution fMRI is a rapidly growing research field focused on capturing functional signal changes across cortical layers. However, the data acquisition is limited by low spatial frequency EPI artifacts; termed here as Fuzzy Ripples. These artifacts limit the practical applicability of acquisition protocols with higher spatial resolution, faster acquisition speed, and they challenge imaging in inferior regions of the brain.</p><p><strong>Methods: </strong>We characterize Fuzzy Ripple artifacts across commonly used sequences and distinguish them from conventional EPI Nyquist ghosts and off-resonance effects. To investigate their origin, we employ dual-polarity readouts.</p><p><strong>Results: </strong>Our findings indicate that Fuzzy Ripples are primarily caused by readout-specific imperfections in k-space trajectories, which can be exacerbated by short-term eddy current, and by inductive coupling between third-order shims and readout gradients. We also find that these artifacts can be mitigated through complex-valued averaging of dual-polarity EPI or by disconnecting the third-order shim coils.</p><p><strong>Conclusion: </strong>The proposed mitigation strategies allow overcoming current limitations in layer-fMRI protocols: Achieving resolutions beyond 0.8 mm is feasible, and even at 3T, we achieved 0.53 mm voxel functional connectivity mapping. Sub-millimeter sampling acceleration can be increased to allow sub-second TRs and laminar whole brain protocols with up to GRAPPA 8. Sub-millimeter fMRI is achievable in lower brain areas, including the cerebellum.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30489\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30489","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term gradient imperfections in high-resolution EPI lead to Fuzzy Ripple artifacts.

Purpose: High-resolution fMRI is a rapidly growing research field focused on capturing functional signal changes across cortical layers. However, the data acquisition is limited by low spatial frequency EPI artifacts; termed here as Fuzzy Ripples. These artifacts limit the practical applicability of acquisition protocols with higher spatial resolution, faster acquisition speed, and they challenge imaging in inferior regions of the brain.

Methods: We characterize Fuzzy Ripple artifacts across commonly used sequences and distinguish them from conventional EPI Nyquist ghosts and off-resonance effects. To investigate their origin, we employ dual-polarity readouts.

Results: Our findings indicate that Fuzzy Ripples are primarily caused by readout-specific imperfections in k-space trajectories, which can be exacerbated by short-term eddy current, and by inductive coupling between third-order shims and readout gradients. We also find that these artifacts can be mitigated through complex-valued averaging of dual-polarity EPI or by disconnecting the third-order shim coils.

Conclusion: The proposed mitigation strategies allow overcoming current limitations in layer-fMRI protocols: Achieving resolutions beyond 0.8 mm is feasible, and even at 3T, we achieved 0.53 mm voxel functional connectivity mapping. Sub-millimeter sampling acceleration can be increased to allow sub-second TRs and laminar whole brain protocols with up to GRAPPA 8. Sub-millimeter fMRI is achievable in lower brain areas, including the cerebellum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信