基于 B 1 + 预测的电特性层析成像重建评估。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Thierry G Meerbothe, Kyu-Jin Jung, Chuanjiang Cui, Dong-Hyun Kim, Cornelis A T van den Berg, Stefano Mandija
{"title":"基于 B 1 + 预测的电特性层析成像重建评估。","authors":"Thierry G Meerbothe, Kyu-Jin Jung, Chuanjiang Cui, Dong-Hyun Kim, Cornelis A T van den Berg, Stefano Mandija","doi":"10.1002/mrm.30520","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the reconstruction method, reconstructed electrical properties (EPs) show large variability in vivo, reducing confidence in the reconstructed values for clinical application in practice. To overcome this problem we present a method to evaluate the reconstructed EPs using a physics-based <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> estimation model.</p><p><strong>Methods: </strong>A physics-based method using a finite difference based recurrent relation is used to estimate the <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field from a set of given EPs and the boundary of the measured <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field. Reconstructed EPs can be evaluated by comparing the estimated <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field with the measured <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field. The method was first validated in simulations and afterward tested using MRI data from phantoms and in vivo.</p><p><strong>Results: </strong>The simulation experiments show that the <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field can be accurately estimated, within 90 s for a typical brain at 1 mm<sup>3</sup> isotropic resolution, when correct EPs are used as input. When incorrect EPs are used as input the estimated <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> fields shows differences with the measured <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> fields. These differences directly correspond to the errors in the underlying EPs, enabling detection of errors in the reconstructions. The results obtained in MRI experiments using phantoms and in vivo show the applicability of the method in practice.</p><p><strong>Conclusion: </strong>With the proposed method, <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> fields can be accurately estimated from EPs. This approach can be used to evaluate EPT reconstructions and consequently gain more confidence in reconstructed EPs values in vivo.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Electrical properties based <ns0:math> <ns0:mrow><ns0:msubsup><ns0:mi>B</ns0:mi> <ns0:mn>1</ns0:mn> <ns0:mo>+</ns0:mo></ns0:msubsup> </ns0:mrow> </ns0:math> prediction for electrical properties tomography reconstruction evaluation.\",\"authors\":\"Thierry G Meerbothe, Kyu-Jin Jung, Chuanjiang Cui, Dong-Hyun Kim, Cornelis A T van den Berg, Stefano Mandija\",\"doi\":\"10.1002/mrm.30520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the reconstruction method, reconstructed electrical properties (EPs) show large variability in vivo, reducing confidence in the reconstructed values for clinical application in practice. To overcome this problem we present a method to evaluate the reconstructed EPs using a physics-based <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> estimation model.</p><p><strong>Methods: </strong>A physics-based method using a finite difference based recurrent relation is used to estimate the <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field from a set of given EPs and the boundary of the measured <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field. Reconstructed EPs can be evaluated by comparing the estimated <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field with the measured <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field. The method was first validated in simulations and afterward tested using MRI data from phantoms and in vivo.</p><p><strong>Results: </strong>The simulation experiments show that the <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field can be accurately estimated, within 90 s for a typical brain at 1 mm<sup>3</sup> isotropic resolution, when correct EPs are used as input. When incorrect EPs are used as input the estimated <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> fields shows differences with the measured <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> fields. These differences directly correspond to the errors in the underlying EPs, enabling detection of errors in the reconstructions. The results obtained in MRI experiments using phantoms and in vivo show the applicability of the method in practice.</p><p><strong>Conclusion: </strong>With the proposed method, <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> fields can be accurately estimated from EPs. This approach can be used to evaluate EPT reconstructions and consequently gain more confidence in reconstructed EPs values in vivo.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30520\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30520","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical properties based B 1 + prediction for electrical properties tomography reconstruction evaluation.

Purpose: In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the reconstruction method, reconstructed electrical properties (EPs) show large variability in vivo, reducing confidence in the reconstructed values for clinical application in practice. To overcome this problem we present a method to evaluate the reconstructed EPs using a physics-based B 1 + $$ {\mathrm{B}}_1^{+} $$ estimation model.

Methods: A physics-based method using a finite difference based recurrent relation is used to estimate the B 1 + $$ {\mathrm{B}}_1^{+} $$ field from a set of given EPs and the boundary of the measured B 1 + $$ {\mathrm{B}}_1^{+} $$ field. Reconstructed EPs can be evaluated by comparing the estimated B 1 + $$ {\mathrm{B}}_1^{+} $$ field with the measured B 1 + $$ {\mathrm{B}}_1^{+} $$ field. The method was first validated in simulations and afterward tested using MRI data from phantoms and in vivo.

Results: The simulation experiments show that the B 1 + $$ {\mathrm{B}}_1^{+} $$ field can be accurately estimated, within 90 s for a typical brain at 1 mm3 isotropic resolution, when correct EPs are used as input. When incorrect EPs are used as input the estimated B 1 + $$ {\mathrm{B}}_1^{+} $$ fields shows differences with the measured B 1 + $$ {\mathrm{B}}_1^{+} $$ fields. These differences directly correspond to the errors in the underlying EPs, enabling detection of errors in the reconstructions. The results obtained in MRI experiments using phantoms and in vivo show the applicability of the method in practice.

Conclusion: With the proposed method, B 1 + $$ {\mathrm{B}}_1^{+} $$ fields can be accurately estimated from EPs. This approach can be used to evaluate EPT reconstructions and consequently gain more confidence in reconstructed EPs values in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信