严重联合免疫缺陷(SCID)小鼠突触传递和长期增强功能受损。

IF 1.6 4区 医学 Q4 NEUROSCIENCES
Neuroreport Pub Date : 2025-04-02 Epub Date: 2025-03-26 DOI:10.1097/WNR.0000000000002149
Leonardo Lupacchini, Cristiana Mollinari, Virginia Tancredi, Enrico Garaci, Daniela Merlo
{"title":"严重联合免疫缺陷(SCID)小鼠突触传递和长期增强功能受损。","authors":"Leonardo Lupacchini, Cristiana Mollinari, Virginia Tancredi, Enrico Garaci, Daniela Merlo","doi":"10.1097/WNR.0000000000002149","DOIUrl":null,"url":null,"abstract":"<p><p>DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is one of the key enzymes involved in DNA double-strand break (DSB) repair. However, recent studies using DNA-PKcs knockout mice revealed that DNA-PKcs plays an important role in neuronal plasticity. The aim of this study was to examine the role of DNA-PKcs on synaptic plasticity in severe combined immunodeficiency disease (SCID) mice that carry a mutation resulting in a DNA-PKcs protein devoid of kinase activity but still expressed in cells, although with a small COOH-terminal truncation. To this aim, we carried out electrophysiological and molecular analysis on hippocampal slices from wild-type (WT) and SCID mice. Electrophysiological analysis showed an impairment in the basal synaptic transmission in SCID mice compared with WT, whereas paired-pulse facilitation, caused by presynaptic mechanisms, was not different in the two groups of animals. By contrast, tetanic stimulation induced long-term potentiation (LTP) with values that were approximately 43% lower in slices from SCID mice compared with WT. The same slices used for electrophysiology were analyzed to study the phosphorylation state of cAMP response element-binding protein (CREB) and extracellular signal-regulated kinases and to evaluate mRNA expression levels of CREB-target genes at different times after LTP induction. In conclusion, molecular analysis did not show significant differences between SCID and WT brain slices, thus confirming the evidence that DNA-PKcs kinase activity directly regulates neuronal functions and plays a novel role beyond DSB repair. Moreover, these results indicate that studies using SCID mice involving analysis of synaptic function need to be interpreted with caution.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":"36 6","pages":"290-296"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949230/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impaired synaptic transmission and long-term potentiation in severe combined immunodeficient (SCID) mice.\",\"authors\":\"Leonardo Lupacchini, Cristiana Mollinari, Virginia Tancredi, Enrico Garaci, Daniela Merlo\",\"doi\":\"10.1097/WNR.0000000000002149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is one of the key enzymes involved in DNA double-strand break (DSB) repair. However, recent studies using DNA-PKcs knockout mice revealed that DNA-PKcs plays an important role in neuronal plasticity. The aim of this study was to examine the role of DNA-PKcs on synaptic plasticity in severe combined immunodeficiency disease (SCID) mice that carry a mutation resulting in a DNA-PKcs protein devoid of kinase activity but still expressed in cells, although with a small COOH-terminal truncation. To this aim, we carried out electrophysiological and molecular analysis on hippocampal slices from wild-type (WT) and SCID mice. Electrophysiological analysis showed an impairment in the basal synaptic transmission in SCID mice compared with WT, whereas paired-pulse facilitation, caused by presynaptic mechanisms, was not different in the two groups of animals. By contrast, tetanic stimulation induced long-term potentiation (LTP) with values that were approximately 43% lower in slices from SCID mice compared with WT. The same slices used for electrophysiology were analyzed to study the phosphorylation state of cAMP response element-binding protein (CREB) and extracellular signal-regulated kinases and to evaluate mRNA expression levels of CREB-target genes at different times after LTP induction. In conclusion, molecular analysis did not show significant differences between SCID and WT brain slices, thus confirming the evidence that DNA-PKcs kinase activity directly regulates neuronal functions and plays a novel role beyond DSB repair. Moreover, these results indicate that studies using SCID mice involving analysis of synaptic function need to be interpreted with caution.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":\"36 6\",\"pages\":\"290-296\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949230/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002149\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002149","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

DNA依赖性蛋白激酶催化亚基(DNA- pkcs)是参与DNA双链断裂(DSB)修复的关键酶之一。然而,最近对DNA-PKcs敲除小鼠的研究表明,DNA-PKcs在神经元可塑性中起重要作用。本研究的目的是研究DNA-PKcs对严重联合免疫缺陷病(SCID)小鼠突触可塑性的作用,这些小鼠携带突变导致DNA-PKcs蛋白缺乏激酶活性,但仍在细胞中表达,尽管有一个小的cooh末端截断。为此,我们对野生型(WT)和SCID小鼠的海马切片进行了电生理和分子分析。电生理分析显示,与WT相比,SCID小鼠的基础突触传递受损,而由突触前机制引起的配对脉冲易化在两组动物中没有差异。相比之下,破伤风刺激诱导的长期增强(LTP)值在SCID小鼠的切片中比WT低约43%。我们分析了用于电生理学的相同切片,以研究cAMP反应元件结合蛋白(CREB)和细胞外信号调节激酶的磷酸化状态,并评估LTP诱导后不同时间CREB靶基因的mRNA表达水平。综上所述,分子分析显示SCID和WT脑切片之间没有显著差异,从而证实了DNA-PKcs激酶活性直接调节神经元功能并在DSB修复之外发挥新作用的证据。此外,这些结果表明,使用SCID小鼠进行的涉及突触功能分析的研究需要谨慎解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impaired synaptic transmission and long-term potentiation in severe combined immunodeficient (SCID) mice.

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is one of the key enzymes involved in DNA double-strand break (DSB) repair. However, recent studies using DNA-PKcs knockout mice revealed that DNA-PKcs plays an important role in neuronal plasticity. The aim of this study was to examine the role of DNA-PKcs on synaptic plasticity in severe combined immunodeficiency disease (SCID) mice that carry a mutation resulting in a DNA-PKcs protein devoid of kinase activity but still expressed in cells, although with a small COOH-terminal truncation. To this aim, we carried out electrophysiological and molecular analysis on hippocampal slices from wild-type (WT) and SCID mice. Electrophysiological analysis showed an impairment in the basal synaptic transmission in SCID mice compared with WT, whereas paired-pulse facilitation, caused by presynaptic mechanisms, was not different in the two groups of animals. By contrast, tetanic stimulation induced long-term potentiation (LTP) with values that were approximately 43% lower in slices from SCID mice compared with WT. The same slices used for electrophysiology were analyzed to study the phosphorylation state of cAMP response element-binding protein (CREB) and extracellular signal-regulated kinases and to evaluate mRNA expression levels of CREB-target genes at different times after LTP induction. In conclusion, molecular analysis did not show significant differences between SCID and WT brain slices, thus confirming the evidence that DNA-PKcs kinase activity directly regulates neuronal functions and plays a novel role beyond DSB repair. Moreover, these results indicate that studies using SCID mice involving analysis of synaptic function need to be interpreted with caution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroreport
Neuroreport 医学-神经科学
CiteScore
3.20
自引率
0.00%
发文量
150
审稿时长
1 months
期刊介绍: NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool. The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works. We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信