B H Peter Duinkerken, Arent J Kievits, Anouk H G Wolters, Daan van Beijeren Bergen En Henegouwen, Jeroen Kuipers, Jacob P Hoogenboom, Ben N G Giepmans
{"title":"多光束光学扫描透射电子显微镜的样品处理和基准测试。","authors":"B H Peter Duinkerken, Arent J Kievits, Anouk H G Wolters, Daan van Beijeren Bergen En Henegouwen, Jeroen Kuipers, Jacob P Hoogenboom, Ben N G Giepmans","doi":"10.1093/mam/ozaf024","DOIUrl":null,"url":null,"abstract":"<p><p>Electron microscopy (EM) is an indispensable technique to visualize biological ultrastructure in health and disease. High-throughput EM further enables larger scales and volumes to be recorded within feasible timeframes. Multibeam optical scanning transmission EM (OSTEM) utilizes multiple beamlets and optical separation of the transmitted electrons to increase imaging throughput with transmission-based imaging. However, the compatibility of multibeam OSTEM with routine sample preparation protocols and the effect of machine settings on image quality remain largely unknown. Here, we show multibeam OSTEM to be an order of magnitude faster than (scanning) transmission EM while yielding comparable high-quality images of tissue processed with standard high-contrast staining protocols. Multibeam OSTEM benefits from embedding approaches that introduce high contrast but is flexible in the type of stain used. Optimal results are obtained using an acceleration voltage of 5 kV, where section thickness and pixel dwell time require a balance between throughput and image quality. Our results show high-throughput EM with imaging quality comparable with commonly used transmission-based modalities, enabling biological ultrastructure analysis across larger scales and volumes.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":"31 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample Processing and Benchmarking for Multibeam Optical Scanning Transmission Electron Microscopy.\",\"authors\":\"B H Peter Duinkerken, Arent J Kievits, Anouk H G Wolters, Daan van Beijeren Bergen En Henegouwen, Jeroen Kuipers, Jacob P Hoogenboom, Ben N G Giepmans\",\"doi\":\"10.1093/mam/ozaf024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electron microscopy (EM) is an indispensable technique to visualize biological ultrastructure in health and disease. High-throughput EM further enables larger scales and volumes to be recorded within feasible timeframes. Multibeam optical scanning transmission EM (OSTEM) utilizes multiple beamlets and optical separation of the transmitted electrons to increase imaging throughput with transmission-based imaging. However, the compatibility of multibeam OSTEM with routine sample preparation protocols and the effect of machine settings on image quality remain largely unknown. Here, we show multibeam OSTEM to be an order of magnitude faster than (scanning) transmission EM while yielding comparable high-quality images of tissue processed with standard high-contrast staining protocols. Multibeam OSTEM benefits from embedding approaches that introduce high contrast but is flexible in the type of stain used. Optimal results are obtained using an acceleration voltage of 5 kV, where section thickness and pixel dwell time require a balance between throughput and image quality. Our results show high-throughput EM with imaging quality comparable with commonly used transmission-based modalities, enabling biological ultrastructure analysis across larger scales and volumes.</p>\",\"PeriodicalId\":18625,\"journal\":{\"name\":\"Microscopy and Microanalysis\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy and Microanalysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/mam/ozaf024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozaf024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Sample Processing and Benchmarking for Multibeam Optical Scanning Transmission Electron Microscopy.
Electron microscopy (EM) is an indispensable technique to visualize biological ultrastructure in health and disease. High-throughput EM further enables larger scales and volumes to be recorded within feasible timeframes. Multibeam optical scanning transmission EM (OSTEM) utilizes multiple beamlets and optical separation of the transmitted electrons to increase imaging throughput with transmission-based imaging. However, the compatibility of multibeam OSTEM with routine sample preparation protocols and the effect of machine settings on image quality remain largely unknown. Here, we show multibeam OSTEM to be an order of magnitude faster than (scanning) transmission EM while yielding comparable high-quality images of tissue processed with standard high-contrast staining protocols. Multibeam OSTEM benefits from embedding approaches that introduce high contrast but is flexible in the type of stain used. Optimal results are obtained using an acceleration voltage of 5 kV, where section thickness and pixel dwell time require a balance between throughput and image quality. Our results show high-throughput EM with imaging quality comparable with commonly used transmission-based modalities, enabling biological ultrastructure analysis across larger scales and volumes.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.