{"title":"Sensing Compound Substructures Combined with Molecular Fingerprinting to Predict Drug-Target Interactions.","authors":"Wanhua Huang, Xuecong Tian, Ying Su, Sizhe Zhang, Chen Chen, Cheng Chen","doi":"10.1007/s12539-025-00698-3","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of drug-target interactions (DTIs) is critical for drug discovery and drug repositioning. However, most DTI methods that extract features from drug molecules and protein entities neglect specific substructure information of pharmacological responses, which leads to poor predictive performance. Moreover, most existing methods are based on molecular graphs or molecular descriptors to obtain abstract representations of molecules, but combining the two feature learning methods for DTI prediction remains unexplored. Therefore, a new ASCS-DTI framework for DTI prediction is proposed, which utilizes a substructure attention mechanism to flexibly capture substructures of compounds at different grain sizes, allowing the important substructure information of each molecule to be learned. Additionally, the framework combines three different molecular fingerprinting information to comprehensively characterize molecular representations. A stacked convolutional coding module processes the sequence information of target proteins in a multi-scale and multi-level view. Finally, multi-modal fusion of molecular graph features and molecular fingerprint features, along with multi-modal information encoding of DTIs, is performed by the feature fusion module. The method outperforms six advanced baseline models on different benchmark datasets: Biosnap, BindingDB, and Human, with a significant improvement in performance, particularly in maintaining strong results across different experimental settings.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00698-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Sensing Compound Substructures Combined with Molecular Fingerprinting to Predict Drug-Target Interactions.
Identification of drug-target interactions (DTIs) is critical for drug discovery and drug repositioning. However, most DTI methods that extract features from drug molecules and protein entities neglect specific substructure information of pharmacological responses, which leads to poor predictive performance. Moreover, most existing methods are based on molecular graphs or molecular descriptors to obtain abstract representations of molecules, but combining the two feature learning methods for DTI prediction remains unexplored. Therefore, a new ASCS-DTI framework for DTI prediction is proposed, which utilizes a substructure attention mechanism to flexibly capture substructures of compounds at different grain sizes, allowing the important substructure information of each molecule to be learned. Additionally, the framework combines three different molecular fingerprinting information to comprehensively characterize molecular representations. A stacked convolutional coding module processes the sequence information of target proteins in a multi-scale and multi-level view. Finally, multi-modal fusion of molecular graph features and molecular fingerprint features, along with multi-modal information encoding of DTIs, is performed by the feature fusion module. The method outperforms six advanced baseline models on different benchmark datasets: Biosnap, BindingDB, and Human, with a significant improvement in performance, particularly in maintaining strong results across different experimental settings.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.