Moritz T Winkelmann, Jens Kübler, Sebastian Gassenmaier, Dominik M Nickel, Antonia Ashkar, Konstantin Nikolaou, Saif Afat, Rüdiger Hoffmann
{"title":"基于深度学习的重建和超分辨率在磁共振引导下肝恶性病变热消融中的应用。","authors":"Moritz T Winkelmann, Jens Kübler, Sebastian Gassenmaier, Dominik M Nickel, Antonia Ashkar, Konstantin Nikolaou, Saif Afat, Rüdiger Hoffmann","doi":"10.1186/s40644-025-00869-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study evaluates the impact of deep learning-enhanced T1-weighted VIBE sequences (DL-VIBE) on image quality and procedural parameters during MR-guided thermoablation of liver malignancies, compared to standard VIBE (SD-VIBE).</p><p><strong>Methods: </strong>Between September 2021 and February 2023, 34 patients (mean age: 65.4 years; 13 women) underwent MR-guided microwave ablation on a 1.5 T scanner. Intraprocedural SD-VIBE sequences were retrospectively processed with a deep learning algorithm (DL-VIBE) to reduce noise and enhance sharpness. Two interventional radiologists independently assessed image quality, noise, artifacts, sharpness, diagnostic confidence, and procedural parameters using a 5-point Likert scale. Interrater agreement was analyzed, and noise maps were created to assess signal-to-noise ratio improvements.</p><p><strong>Results: </strong>DL-VIBE significantly improved image quality, reduced artifacts and noise, and enhanced sharpness of liver contours and portal vein branches compared to SD-VIBE (p < 0.01). Procedural metrics, including needle tip detectability, confidence in needle positioning, and ablation zone assessment, were significantly better with DL-VIBE (p < 0.01). Interrater agreement was high (Cohen κ = 0.86). Reconstruction times for DL-VIBE were 3 s for k-space reconstruction and 1 s for superresolution processing. Simulated acquisition modifications reduced breath-hold duration by approximately 2 s.</p><p><strong>Conclusion: </strong>DL-VIBE enhances image quality during MR-guided thermal ablation while improving efficiency through reduced processing and acquisition times.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"25 1","pages":"47"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based reconstruction and superresolution for MR-guided thermal ablation of malignant liver lesions.\",\"authors\":\"Moritz T Winkelmann, Jens Kübler, Sebastian Gassenmaier, Dominik M Nickel, Antonia Ashkar, Konstantin Nikolaou, Saif Afat, Rüdiger Hoffmann\",\"doi\":\"10.1186/s40644-025-00869-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study evaluates the impact of deep learning-enhanced T1-weighted VIBE sequences (DL-VIBE) on image quality and procedural parameters during MR-guided thermoablation of liver malignancies, compared to standard VIBE (SD-VIBE).</p><p><strong>Methods: </strong>Between September 2021 and February 2023, 34 patients (mean age: 65.4 years; 13 women) underwent MR-guided microwave ablation on a 1.5 T scanner. Intraprocedural SD-VIBE sequences were retrospectively processed with a deep learning algorithm (DL-VIBE) to reduce noise and enhance sharpness. Two interventional radiologists independently assessed image quality, noise, artifacts, sharpness, diagnostic confidence, and procedural parameters using a 5-point Likert scale. Interrater agreement was analyzed, and noise maps were created to assess signal-to-noise ratio improvements.</p><p><strong>Results: </strong>DL-VIBE significantly improved image quality, reduced artifacts and noise, and enhanced sharpness of liver contours and portal vein branches compared to SD-VIBE (p < 0.01). Procedural metrics, including needle tip detectability, confidence in needle positioning, and ablation zone assessment, were significantly better with DL-VIBE (p < 0.01). Interrater agreement was high (Cohen κ = 0.86). Reconstruction times for DL-VIBE were 3 s for k-space reconstruction and 1 s for superresolution processing. Simulated acquisition modifications reduced breath-hold duration by approximately 2 s.</p><p><strong>Conclusion: </strong>DL-VIBE enhances image quality during MR-guided thermal ablation while improving efficiency through reduced processing and acquisition times.</p>\",\"PeriodicalId\":9548,\"journal\":{\"name\":\"Cancer Imaging\",\"volume\":\"25 1\",\"pages\":\"47\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40644-025-00869-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-025-00869-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Deep learning-based reconstruction and superresolution for MR-guided thermal ablation of malignant liver lesions.
Objective: This study evaluates the impact of deep learning-enhanced T1-weighted VIBE sequences (DL-VIBE) on image quality and procedural parameters during MR-guided thermoablation of liver malignancies, compared to standard VIBE (SD-VIBE).
Methods: Between September 2021 and February 2023, 34 patients (mean age: 65.4 years; 13 women) underwent MR-guided microwave ablation on a 1.5 T scanner. Intraprocedural SD-VIBE sequences were retrospectively processed with a deep learning algorithm (DL-VIBE) to reduce noise and enhance sharpness. Two interventional radiologists independently assessed image quality, noise, artifacts, sharpness, diagnostic confidence, and procedural parameters using a 5-point Likert scale. Interrater agreement was analyzed, and noise maps were created to assess signal-to-noise ratio improvements.
Results: DL-VIBE significantly improved image quality, reduced artifacts and noise, and enhanced sharpness of liver contours and portal vein branches compared to SD-VIBE (p < 0.01). Procedural metrics, including needle tip detectability, confidence in needle positioning, and ablation zone assessment, were significantly better with DL-VIBE (p < 0.01). Interrater agreement was high (Cohen κ = 0.86). Reconstruction times for DL-VIBE were 3 s for k-space reconstruction and 1 s for superresolution processing. Simulated acquisition modifications reduced breath-hold duration by approximately 2 s.
Conclusion: DL-VIBE enhances image quality during MR-guided thermal ablation while improving efficiency through reduced processing and acquisition times.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.