{"title":"Induction and manipulation of biomolecular condensates through spatially heterogeneous solution conditions.","authors":"Alexander Kai Buell","doi":"10.1002/cbic.202500044","DOIUrl":null,"url":null,"abstract":"<p><p>The study of biomolecular condensates (BMCs) is of great current interest because of the proposed roles of these types of assemblies in biological function and disease. In living cells, BMCs form in a highly heterogeneous environment and are influenced by concentration gradients of various relevant species. Furthermore, the biological functionality of the BMCs requires precise spatial control of their formation in some cases. In recent years, a number of in vitro experimental approaches have emerged that allow the generation, study and manipulation of BMCs through the creation of well-defined spatially heterogeneous solution conditions relevant for BMC formation. In this Concept article I will present in what way such methods can contribute to improved understanding and control of BMCs.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500044"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500044","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Induction and manipulation of biomolecular condensates through spatially heterogeneous solution conditions.
The study of biomolecular condensates (BMCs) is of great current interest because of the proposed roles of these types of assemblies in biological function and disease. In living cells, BMCs form in a highly heterogeneous environment and are influenced by concentration gradients of various relevant species. Furthermore, the biological functionality of the BMCs requires precise spatial control of their formation in some cases. In recent years, a number of in vitro experimental approaches have emerged that allow the generation, study and manipulation of BMCs through the creation of well-defined spatially heterogeneous solution conditions relevant for BMC formation. In this Concept article I will present in what way such methods can contribute to improved understanding and control of BMCs.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).