硼酸配合物的战略性n迁移:远程C-C键构建的新平台。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Yi-Ming Chen, Xue Li, Zhi-Gang Xu
{"title":"硼酸配合物的战略性n迁移:远程C-C键构建的新平台。","authors":"Yi-Ming Chen, Xue Li, Zhi-Gang Xu","doi":"10.1007/s11030-025-11169-8","DOIUrl":null,"url":null,"abstract":"<p><p>Organoboron compounds play a pivotal role in diverse scientific disciplines, including chemistry, materials science, energy research, and medicinal chemistry. In recent years, research efforts have predominantly focused on 1,2-metallate migrations of tetracoordinate boronate complexes, while remote migrations, particularly 1,n-metallate migrations (n > 2), remain challenging due to their inherent complexity. This comprehensive review systematically examines seminal contributions to the field of 1,n-metallate migration reactions (n > 2). Our critical analysis reveals that progress in this domain has been fundamentally driven by the strategic design and synthesis of novel tetracoordinate boron complexes, with a notable evolution from conventional O-B coordination motifs to more sophisticated C-B-bonded architectures. Recent methodological advancements have further expanded the structural diversity and mechanistic understanding of these transformations. Although the number of reported cases remains limited and the research landscape is somewhat fragmented, the existing systems underscore the significance of these migration reactions, drawing considerable attention to this area and inspiring further exploration.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic 1,n-migration of boronate complexes: a novel platform for remote C-C bond construction.\",\"authors\":\"Yi-Ming Chen, Xue Li, Zhi-Gang Xu\",\"doi\":\"10.1007/s11030-025-11169-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organoboron compounds play a pivotal role in diverse scientific disciplines, including chemistry, materials science, energy research, and medicinal chemistry. In recent years, research efforts have predominantly focused on 1,2-metallate migrations of tetracoordinate boronate complexes, while remote migrations, particularly 1,n-metallate migrations (n > 2), remain challenging due to their inherent complexity. This comprehensive review systematically examines seminal contributions to the field of 1,n-metallate migration reactions (n > 2). Our critical analysis reveals that progress in this domain has been fundamentally driven by the strategic design and synthesis of novel tetracoordinate boron complexes, with a notable evolution from conventional O-B coordination motifs to more sophisticated C-B-bonded architectures. Recent methodological advancements have further expanded the structural diversity and mechanistic understanding of these transformations. Although the number of reported cases remains limited and the research landscape is somewhat fragmented, the existing systems underscore the significance of these migration reactions, drawing considerable attention to this area and inspiring further exploration.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11169-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11169-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

有机硼化合物在包括化学、材料科学、能源研究和药物化学在内的各种科学学科中发挥着关键作用。近年来,研究工作主要集中在四配位硼酸盐配合物的1,2-金属酸盐迁移上,而远端迁移,特别是1,n-金属酸盐迁移(n bbb20),由于其固有的复杂性,仍然具有挑战性。这篇全面的综述系统地检查了对1,n-金属迁移反应领域的开创性贡献(n bbb20)。我们的批判性分析表明,该领域的进展从根本上是由新型四配位硼配合物的战略性设计和合成驱动的,从传统的O-B配位基序到更复杂的c -b键合结构的显著演变。最近的方法进步进一步扩展了这些转变的结构多样性和机制理解。尽管报告的病例数量仍然有限,研究领域也有些零散,但现有的系统强调了这些迁移反应的重要性,引起了对这一领域的相当大的关注,并激发了进一步的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategic 1,n-migration of boronate complexes: a novel platform for remote C-C bond construction.

Organoboron compounds play a pivotal role in diverse scientific disciplines, including chemistry, materials science, energy research, and medicinal chemistry. In recent years, research efforts have predominantly focused on 1,2-metallate migrations of tetracoordinate boronate complexes, while remote migrations, particularly 1,n-metallate migrations (n > 2), remain challenging due to their inherent complexity. This comprehensive review systematically examines seminal contributions to the field of 1,n-metallate migration reactions (n > 2). Our critical analysis reveals that progress in this domain has been fundamentally driven by the strategic design and synthesis of novel tetracoordinate boron complexes, with a notable evolution from conventional O-B coordination motifs to more sophisticated C-B-bonded architectures. Recent methodological advancements have further expanded the structural diversity and mechanistic understanding of these transformations. Although the number of reported cases remains limited and the research landscape is somewhat fragmented, the existing systems underscore the significance of these migration reactions, drawing considerable attention to this area and inspiring further exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信