纯水中二维无定形MoO3-x/ tnt异质结对甲酸光催化葡萄糖重整。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-04-03 DOI:10.1002/cssc.202500465
Yue Zhou, Pengfei Yan, Wei Liu, Zijian Ma, Chaozheng Zhou, Yingguo Liu, Qun Xu
{"title":"纯水中二维无定形MoO3-x/ tnt异质结对甲酸光催化葡萄糖重整。","authors":"Yue Zhou, Pengfei Yan, Wei Liu, Zijian Ma, Chaozheng Zhou, Yingguo Liu, Qun Xu","doi":"10.1002/cssc.202500465","DOIUrl":null,"url":null,"abstract":"<p><p>Formic acid is a promising hydrogen-storage material and biohydrogen production intermediate, offering sustainable biomass-derived alternative processes. Herein, a two-dimensional amorphous molybdenum oxide/titanium oxide nanotubes (MoO3-x/TNTs) heterojunction with amorphous/crystalline interfaces, is designed and fabricated by supercritical CO2, with which the photocatalytic reforming of glucose for formic acid is realized in pure water. The HCOOH yields of 14.8% for glucose and 22% for glycerol are achieved in pure water at room temperature with 2 bars O2 atmosphere within 6 hours under 365 nm light with 5 mW/cm2. The photoinduced Mo6+-catalyzed ligand-to-metal charge transfer (LMCT) and the enhanced adsorption energy of glucose molecules on the MoO3-x surface in the MoO3-x/TNTs heterojunction facilitate the cleavage of C-C bonds in polyhydric alcohol skeletons, leading to the formation of HCOOH. Under light excitation, MoO3-x transfers electrons to TNTs due to defect state, synergizing with the generated •OH radicals in the system. This results in reversible cycling between Mo6+ and Mo5+, thereby ensuring catalytic persistence. Therefore, this study demonstrates a photocatalytic strategy for the sustainable production of value-added chemicals from biomass under eco-friendly conditions, using easily recyclable heterogeneous catalysts in pure water.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500465"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Glucose Reforming for Formic Acid on 2D Amorphous MoO3-x/TNTs Heterojunction in Pure Water.\",\"authors\":\"Yue Zhou, Pengfei Yan, Wei Liu, Zijian Ma, Chaozheng Zhou, Yingguo Liu, Qun Xu\",\"doi\":\"10.1002/cssc.202500465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Formic acid is a promising hydrogen-storage material and biohydrogen production intermediate, offering sustainable biomass-derived alternative processes. Herein, a two-dimensional amorphous molybdenum oxide/titanium oxide nanotubes (MoO3-x/TNTs) heterojunction with amorphous/crystalline interfaces, is designed and fabricated by supercritical CO2, with which the photocatalytic reforming of glucose for formic acid is realized in pure water. The HCOOH yields of 14.8% for glucose and 22% for glycerol are achieved in pure water at room temperature with 2 bars O2 atmosphere within 6 hours under 365 nm light with 5 mW/cm2. The photoinduced Mo6+-catalyzed ligand-to-metal charge transfer (LMCT) and the enhanced adsorption energy of glucose molecules on the MoO3-x surface in the MoO3-x/TNTs heterojunction facilitate the cleavage of C-C bonds in polyhydric alcohol skeletons, leading to the formation of HCOOH. Under light excitation, MoO3-x transfers electrons to TNTs due to defect state, synergizing with the generated •OH radicals in the system. This results in reversible cycling between Mo6+ and Mo5+, thereby ensuring catalytic persistence. Therefore, this study demonstrates a photocatalytic strategy for the sustainable production of value-added chemicals from biomass under eco-friendly conditions, using easily recyclable heterogeneous catalysts in pure water.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500465\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500465\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500465","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

甲酸是一种很有前途的储氢材料和生物制氢中间体,提供了可持续的生物质衍生替代工艺。本文利用超临界CO2设计并制备了具有非晶/晶界面的二维无定形氧化钼/氧化钛纳米管(MoO3-x/TNTs)异质结,实现了葡萄糖在纯水中光催化重整甲酸。在365 nm、5 mW/cm2的光下,在室温、2 bar O2气氛下,在6小时内,葡萄糖的HCOOH收率为14.8%,甘油的HCOOH收率为22%。在MoO3-x/TNTs异质结中,光诱导Mo6+催化的配体-金属电荷转移(LMCT)和葡萄糖分子在MoO3-x表面的吸附能增强促进了多羟基醇骨架中C-C键的断裂,导致HCOOH的形成。在光激发下,MoO3-x由于缺陷态将电子转移到tnt上,与体系中生成的•OH自由基协同作用。这导致了Mo6+和Mo5+之间的可逆循环,从而确保了催化的持久性。因此,本研究展示了一种光催化策略,在生态友好的条件下,利用纯水中易于回收的多相催化剂,从生物质中可持续生产增值化学品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photocatalytic Glucose Reforming for Formic Acid on 2D Amorphous MoO3-x/TNTs Heterojunction in Pure Water.

Formic acid is a promising hydrogen-storage material and biohydrogen production intermediate, offering sustainable biomass-derived alternative processes. Herein, a two-dimensional amorphous molybdenum oxide/titanium oxide nanotubes (MoO3-x/TNTs) heterojunction with amorphous/crystalline interfaces, is designed and fabricated by supercritical CO2, with which the photocatalytic reforming of glucose for formic acid is realized in pure water. The HCOOH yields of 14.8% for glucose and 22% for glycerol are achieved in pure water at room temperature with 2 bars O2 atmosphere within 6 hours under 365 nm light with 5 mW/cm2. The photoinduced Mo6+-catalyzed ligand-to-metal charge transfer (LMCT) and the enhanced adsorption energy of glucose molecules on the MoO3-x surface in the MoO3-x/TNTs heterojunction facilitate the cleavage of C-C bonds in polyhydric alcohol skeletons, leading to the formation of HCOOH. Under light excitation, MoO3-x transfers electrons to TNTs due to defect state, synergizing with the generated •OH radicals in the system. This results in reversible cycling between Mo6+ and Mo5+, thereby ensuring catalytic persistence. Therefore, this study demonstrates a photocatalytic strategy for the sustainable production of value-added chemicals from biomass under eco-friendly conditions, using easily recyclable heterogeneous catalysts in pure water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信