Jared R Cossin, Thaddeus Q Paulsel, Kim Castelli, Breck Wcisel, Alexandra A Malico, Gavin J Williams
{"title":"乙酰辅酶a合成酶对不同乙酰辅酶a硫酯生成的特异性工程研究。","authors":"Jared R Cossin, Thaddeus Q Paulsel, Kim Castelli, Breck Wcisel, Alexandra A Malico, Gavin J Williams","doi":"10.1021/acschembio.5c00014","DOIUrl":null,"url":null,"abstract":"<p><p>CoA thioesters are valuable intermediates in numerous biosynthetic routes and metabolic processes. However, diversifying these compounds and their corresponding downstream products hinges on broadening the promiscuity of CoA ligases that produce them or using additional enzymes to functionalize them. Here, the inherent promiscuity of an acyl-CoA ligase from <i>Pseudomonas chlororaphis</i> was probed with carboxylic acids of varying sizes and functionality. The enzyme was engineered to improve its activity with a diverse panel of acyl-CoA thioesters, including halogenated and oxidized acids, that can be used in downstream biosynthetic production strategies. To demonstrate the utility of the engineered enzyme, a subset of the substrates was leveraged for the complete <i>in situ</i> biosynthesis of a small panel of pyrones via a portion of the archetypal polyketide synthase (PKS), 6-deoxyerythronolide B synthase (DEBS). This approach supports probing the promiscuity of polyketide biosynthesis and the diversification of natural product scaffolds.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering the Specificity of Acetyl-CoA Synthetase for Diverse Acyl-CoA Thioester Generation.\",\"authors\":\"Jared R Cossin, Thaddeus Q Paulsel, Kim Castelli, Breck Wcisel, Alexandra A Malico, Gavin J Williams\",\"doi\":\"10.1021/acschembio.5c00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CoA thioesters are valuable intermediates in numerous biosynthetic routes and metabolic processes. However, diversifying these compounds and their corresponding downstream products hinges on broadening the promiscuity of CoA ligases that produce them or using additional enzymes to functionalize them. Here, the inherent promiscuity of an acyl-CoA ligase from <i>Pseudomonas chlororaphis</i> was probed with carboxylic acids of varying sizes and functionality. The enzyme was engineered to improve its activity with a diverse panel of acyl-CoA thioesters, including halogenated and oxidized acids, that can be used in downstream biosynthetic production strategies. To demonstrate the utility of the engineered enzyme, a subset of the substrates was leveraged for the complete <i>in situ</i> biosynthesis of a small panel of pyrones via a portion of the archetypal polyketide synthase (PKS), 6-deoxyerythronolide B synthase (DEBS). This approach supports probing the promiscuity of polyketide biosynthesis and the diversification of natural product scaffolds.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.5c00014\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Engineering the Specificity of Acetyl-CoA Synthetase for Diverse Acyl-CoA Thioester Generation.
CoA thioesters are valuable intermediates in numerous biosynthetic routes and metabolic processes. However, diversifying these compounds and their corresponding downstream products hinges on broadening the promiscuity of CoA ligases that produce them or using additional enzymes to functionalize them. Here, the inherent promiscuity of an acyl-CoA ligase from Pseudomonas chlororaphis was probed with carboxylic acids of varying sizes and functionality. The enzyme was engineered to improve its activity with a diverse panel of acyl-CoA thioesters, including halogenated and oxidized acids, that can be used in downstream biosynthetic production strategies. To demonstrate the utility of the engineered enzyme, a subset of the substrates was leveraged for the complete in situ biosynthesis of a small panel of pyrones via a portion of the archetypal polyketide synthase (PKS), 6-deoxyerythronolide B synthase (DEBS). This approach supports probing the promiscuity of polyketide biosynthesis and the diversification of natural product scaffolds.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.