聚合物骨架编辑及其对聚合物生命周期的影响。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sydney E Towell, Mark J Jareczek, Lauren S Cooke, Daniel R Godfrey, Aleksandr V Zhukhovitskiy
{"title":"聚合物骨架编辑及其对聚合物生命周期的影响。","authors":"Sydney E Towell, Mark J Jareczek, Lauren S Cooke, Daniel R Godfrey, Aleksandr V Zhukhovitskiy","doi":"10.1021/acs.accounts.5c00054","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusIn the last five years, interest in the precise modification of molecular cores─termed skeletal editing─has rapidly expanded in the Chemistry community. Beyond the intrinsic value of these transformations, skeletal editing also has value in the attention it brings to under-explored chemical challenges, whose solutions could transform the practice of Chemistry at large. In few contexts does this perspective ring as true as in the realm of polymers. Inspired by the revolutionary power of biologically derived machinery called CRISPR-Cas9 to edit nucleic acid polymers and, consequently, the genetic meaning encoded in them, we envisioned that skeletal editing of synthetic polymer backbones may also enable control over the structure and \"meaning\"─i.e., properties and function─of plastics. However, the idea of editing polymer backbones brings about numerous fundamental chemical questions that must be answered to make the vision a reality: for instance, how to constructively activate carbon-carbon and carbon-heteroatom bonds that make up typical polymer backbones and how to do so in a site-selective manner? While many fundamental questions have begun to be answered by the small molecule community, they are yet to be applied to the realm of polymers, and such adaptation often begets new scientific challenges. Moreover, as we begin to tackle these questions, we must always consider how advances in skeletal editing of polymer backbones impact the broader contexts of applications and sustainability of plastics.In this Account, we summarize our efforts to advance the skeletal editing of polymer backbones, focusing on how such methods can affect each stage of the polymer lifecycle: (1) provide an entry to previously challenging-to-access functional polymers or to existing ones but from new feedstocks, (2) evolve one type of polymer into another with associated changes in material properties, and (3) enable the breakdown of otherwise intractable polymer backbones. Along the way, we describe our rationale behind the selection and development of reactions utilized for skeletal editing. We explain how small molecule reactions often need to be adapted to suit polymeric substrates and the methodology optimizations we needed to do to accomplish our edits. We also discuss the considerations involved in the selection or design of polymeric substrates for editing with an eye toward what edits can add to polymer function and how to advance the field. We conclude with an outlook on outstanding challenges that we aim to address in future work establishing areas for future exploration within each of our topic areas.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skeletal Editing of Polymer Backbones and Its Impact Across the Polymer Lifecycle.\",\"authors\":\"Sydney E Towell, Mark J Jareczek, Lauren S Cooke, Daniel R Godfrey, Aleksandr V Zhukhovitskiy\",\"doi\":\"10.1021/acs.accounts.5c00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ConspectusIn the last five years, interest in the precise modification of molecular cores─termed skeletal editing─has rapidly expanded in the Chemistry community. Beyond the intrinsic value of these transformations, skeletal editing also has value in the attention it brings to under-explored chemical challenges, whose solutions could transform the practice of Chemistry at large. In few contexts does this perspective ring as true as in the realm of polymers. Inspired by the revolutionary power of biologically derived machinery called CRISPR-Cas9 to edit nucleic acid polymers and, consequently, the genetic meaning encoded in them, we envisioned that skeletal editing of synthetic polymer backbones may also enable control over the structure and \\\"meaning\\\"─i.e., properties and function─of plastics. However, the idea of editing polymer backbones brings about numerous fundamental chemical questions that must be answered to make the vision a reality: for instance, how to constructively activate carbon-carbon and carbon-heteroatom bonds that make up typical polymer backbones and how to do so in a site-selective manner? While many fundamental questions have begun to be answered by the small molecule community, they are yet to be applied to the realm of polymers, and such adaptation often begets new scientific challenges. Moreover, as we begin to tackle these questions, we must always consider how advances in skeletal editing of polymer backbones impact the broader contexts of applications and sustainability of plastics.In this Account, we summarize our efforts to advance the skeletal editing of polymer backbones, focusing on how such methods can affect each stage of the polymer lifecycle: (1) provide an entry to previously challenging-to-access functional polymers or to existing ones but from new feedstocks, (2) evolve one type of polymer into another with associated changes in material properties, and (3) enable the breakdown of otherwise intractable polymer backbones. Along the way, we describe our rationale behind the selection and development of reactions utilized for skeletal editing. We explain how small molecule reactions often need to be adapted to suit polymeric substrates and the methodology optimizations we needed to do to accomplish our edits. We also discuss the considerations involved in the selection or design of polymeric substrates for editing with an eye toward what edits can add to polymer function and how to advance the field. We conclude with an outlook on outstanding challenges that we aim to address in future work establishing areas for future exploration within each of our topic areas.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.accounts.5c00054\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.5c00054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的五年中,对分子核心的精确修饰──称为骨架编辑──的兴趣在化学学界迅速扩大。除了这些转换的内在价值之外,骨骼编辑还具有关注未被探索的化学挑战的价值,其解决方案可以改变整个化学实践。在很少的情况下,这种观点像在聚合物领域一样正确。受到生物衍生机器CRISPR-Cas9编辑核酸聚合物的革命性力量的启发,因此,编码其中的遗传意义,我们设想合成聚合物骨干的骨骼编辑也可以控制结构和“意义”。塑料的特性和功能。然而,编辑聚合物骨架的想法带来了许多基本的化学问题,这些问题必须得到回答才能使愿景成为现实:例如,如何建设性地激活构成典型聚合物骨架的碳-碳和碳杂原子键,以及如何以选择性的方式激活它们?虽然许多基本问题已经开始在小分子领域得到解答,但它们还没有被应用到聚合物领域,而这种适应往往会带来新的科学挑战。此外,当我们开始解决这些问题时,我们必须始终考虑聚合物骨架编辑的进步如何影响塑料的应用和可持续性的更广泛背景。在本文中,我们总结了我们为推进聚合物骨架编辑所做的努力,重点介绍了这些方法如何影响聚合物生命周期的每个阶段:(1)提供了以前难以获得的功能性聚合物或现有聚合物的入口,但来自新的原料;(2)将一种类型的聚合物演变为另一种类型的聚合物,并改变材料特性;(3)使其他难以处理的聚合物骨架能够分解。在此过程中,我们描述了用于骨骼编辑的选择和开发反应背后的基本原理。我们解释了小分子反应通常需要适应聚合物底物,以及我们需要做的方法优化来完成我们的编辑。我们还讨论了选择或设计用于编辑的聚合物底物所涉及的考虑因素,着眼于编辑可以添加到聚合物功能以及如何推进该领域。最后,我们展望了未来工作中面临的突出挑战,我们的目标是在每个主题领域内建立未来探索的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skeletal Editing of Polymer Backbones and Its Impact Across the Polymer Lifecycle.

ConspectusIn the last five years, interest in the precise modification of molecular cores─termed skeletal editing─has rapidly expanded in the Chemistry community. Beyond the intrinsic value of these transformations, skeletal editing also has value in the attention it brings to under-explored chemical challenges, whose solutions could transform the practice of Chemistry at large. In few contexts does this perspective ring as true as in the realm of polymers. Inspired by the revolutionary power of biologically derived machinery called CRISPR-Cas9 to edit nucleic acid polymers and, consequently, the genetic meaning encoded in them, we envisioned that skeletal editing of synthetic polymer backbones may also enable control over the structure and "meaning"─i.e., properties and function─of plastics. However, the idea of editing polymer backbones brings about numerous fundamental chemical questions that must be answered to make the vision a reality: for instance, how to constructively activate carbon-carbon and carbon-heteroatom bonds that make up typical polymer backbones and how to do so in a site-selective manner? While many fundamental questions have begun to be answered by the small molecule community, they are yet to be applied to the realm of polymers, and such adaptation often begets new scientific challenges. Moreover, as we begin to tackle these questions, we must always consider how advances in skeletal editing of polymer backbones impact the broader contexts of applications and sustainability of plastics.In this Account, we summarize our efforts to advance the skeletal editing of polymer backbones, focusing on how such methods can affect each stage of the polymer lifecycle: (1) provide an entry to previously challenging-to-access functional polymers or to existing ones but from new feedstocks, (2) evolve one type of polymer into another with associated changes in material properties, and (3) enable the breakdown of otherwise intractable polymer backbones. Along the way, we describe our rationale behind the selection and development of reactions utilized for skeletal editing. We explain how small molecule reactions often need to be adapted to suit polymeric substrates and the methodology optimizations we needed to do to accomplish our edits. We also discuss the considerations involved in the selection or design of polymeric substrates for editing with an eye toward what edits can add to polymer function and how to advance the field. We conclude with an outlook on outstanding challenges that we aim to address in future work establishing areas for future exploration within each of our topic areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信