银纳米粒子和氧化铜纳米线包覆ZnO纳米棒阵列自支撑电极同时检测葛根素和大豆苷元

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Jiaqiang Liu, Qi Ai, Yuanxia Zuo, Xinhui Zhao, Qilong Wu, Mingyan Wang, Jun Chen
{"title":"银纳米粒子和氧化铜纳米线包覆ZnO纳米棒阵列自支撑电极同时检测葛根素和大豆苷元","authors":"Jiaqiang Liu,&nbsp;Qi Ai,&nbsp;Yuanxia Zuo,&nbsp;Xinhui Zhao,&nbsp;Qilong Wu,&nbsp;Mingyan Wang,&nbsp;Jun Chen","doi":"10.1002/celc.202400592","DOIUrl":null,"url":null,"abstract":"<p>In this study, ZnO nanorods (ZnONR) were directly grown on carbon fiber paper (CFP), followed by the uniform chemical deposition of CuO nanowires (CuONW) and subsequent hydrothermal synthesis of Ag nanoparticles (AgNP) to form the ternary composite electrode AgNP-CuONW/ZnONR@CFP. When the prepared electrodes were investigated as a non-enzyme biosensor, two distinct and separated differential pulse voltammetric peaks for puerarin (PU) and daidzein (DAI) were observed, indicating that the simultaneous and selective detection of both isoflavones was feasible. The sensor exhibited a linear response across a broad concentration range of 0.01 to 30 μmol/L for puerarin (PU) and 0.05 to 15 μmol/L for daidzein (DAI), with detection limits of 4.0 nmol/L for PU and 17.8 nmol/L for DAI, respectively. Additionally, when used to detect puerarin (PU) and daidzein (DAI) in traditional Chinese medicine samples, the sensor performed excellently, yielding results that consistent with those obtained from high-performance liquid chromatography (HPLC) analysis.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400592","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Electrochemical Detection of Puerarin and Daidzein by Ag Nanoparticles and CuO Nanowires Coated ZnO Nanorod Arrays Self-Supporting Electrode\",\"authors\":\"Jiaqiang Liu,&nbsp;Qi Ai,&nbsp;Yuanxia Zuo,&nbsp;Xinhui Zhao,&nbsp;Qilong Wu,&nbsp;Mingyan Wang,&nbsp;Jun Chen\",\"doi\":\"10.1002/celc.202400592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, ZnO nanorods (ZnONR) were directly grown on carbon fiber paper (CFP), followed by the uniform chemical deposition of CuO nanowires (CuONW) and subsequent hydrothermal synthesis of Ag nanoparticles (AgNP) to form the ternary composite electrode AgNP-CuONW/ZnONR@CFP. When the prepared electrodes were investigated as a non-enzyme biosensor, two distinct and separated differential pulse voltammetric peaks for puerarin (PU) and daidzein (DAI) were observed, indicating that the simultaneous and selective detection of both isoflavones was feasible. The sensor exhibited a linear response across a broad concentration range of 0.01 to 30 μmol/L for puerarin (PU) and 0.05 to 15 μmol/L for daidzein (DAI), with detection limits of 4.0 nmol/L for PU and 17.8 nmol/L for DAI, respectively. Additionally, when used to detect puerarin (PU) and daidzein (DAI) in traditional Chinese medicine samples, the sensor performed excellently, yielding results that consistent with those obtained from high-performance liquid chromatography (HPLC) analysis.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 7\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400592\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400592\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400592","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,ZnO纳米棒(ZnONR)直接生长在碳纤维纸(CFP)上,然后均匀化学沉积CuO纳米线(CuONW),随后水热合成Ag纳米颗粒(AgNP),形成三元复合电极AgNP-CuONW/ZnONR@CFP。当制备的电极作为非酶生物传感器进行研究时,观察到两个截然不同且分离的差分脉冲伏安峰,表明同时选择性检测两种异黄酮是可行的。在0.01 ~ 30 μmol/L葛根素(PU)和0.05 ~ 15 μmol/L大豆苷元(DAI)的浓度范围内具有良好的线性响应,其检出限分别为4.0 nmol/L和17.8 nmol/L。此外,当用于检测中药样品中的葛根素(PU)和大豆苷元(DAI)时,该传感器表现优异,所得结果与高效液相色谱(HPLC)分析结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneous Electrochemical Detection of Puerarin and Daidzein by Ag Nanoparticles and CuO Nanowires Coated ZnO Nanorod Arrays Self-Supporting Electrode

Simultaneous Electrochemical Detection of Puerarin and Daidzein by Ag Nanoparticles and CuO Nanowires Coated ZnO Nanorod Arrays Self-Supporting Electrode

In this study, ZnO nanorods (ZnONR) were directly grown on carbon fiber paper (CFP), followed by the uniform chemical deposition of CuO nanowires (CuONW) and subsequent hydrothermal synthesis of Ag nanoparticles (AgNP) to form the ternary composite electrode AgNP-CuONW/ZnONR@CFP. When the prepared electrodes were investigated as a non-enzyme biosensor, two distinct and separated differential pulse voltammetric peaks for puerarin (PU) and daidzein (DAI) were observed, indicating that the simultaneous and selective detection of both isoflavones was feasible. The sensor exhibited a linear response across a broad concentration range of 0.01 to 30 μmol/L for puerarin (PU) and 0.05 to 15 μmol/L for daidzein (DAI), with detection limits of 4.0 nmol/L for PU and 17.8 nmol/L for DAI, respectively. Additionally, when used to detect puerarin (PU) and daidzein (DAI) in traditional Chinese medicine samples, the sensor performed excellently, yielding results that consistent with those obtained from high-performance liquid chromatography (HPLC) analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信