2023年10月14日日食引起的电离层响应的纬向相关性

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Jianhui He, Xinan Yue, Huijun Le, Ruoxi Li, Xing Li, Yiqun Yu, Wenlong Liu, Jinbin Cao
{"title":"2023年10月14日日食引起的电离层响应的纬向相关性","authors":"Jianhui He,&nbsp;Xinan Yue,&nbsp;Huijun Le,&nbsp;Ruoxi Li,&nbsp;Xing Li,&nbsp;Yiqun Yu,&nbsp;Wenlong Liu,&nbsp;Jinbin Cao","doi":"10.1029/2025JA033765","DOIUrl":null,"url":null,"abstract":"<p>We analyzed the three-dimensional (3-D) ionosphere response to the 14 October 2023 solar eclipse via assimilating multisource total electron content (TEC), including dense global navigation satellite system and the Constellation Observing System for Meteorology, Ionosphere, and Climate. The assimilations reveal a latitudinal dependency of the eclipse-induced TEC depletion, with larger reductions occurring at middle latitudes. In contrast to the electron density depletion throughout all ionosphere heights at middle latitudes, the equatorial ionization anomaly (EIA) region exhibits an altitudinal variation and an asymmetry pattern in density response. The implemented National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model simulations align well with the 3-D electron density assimilations. Diagnostic analysis indicates that the photo-chemical process plays a primary role in the larger depletion at middle latitudes, and the neutral wind transport provides a minor secondary contribution. In contrast, wind transport emerges as a dominant factor near the EIA region. The transequatorial plasma transport associated with northward neutral wind, driven by eclipse-induced local cooling, combined with partly enhanced upward ExB drift, mitigates the total TEC depletion near the EIA region. This study highlights the importance of the dynamic coupling for a self-consistent I-T system between the neutral atmosphere and the ionosphere during eclipses.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Latitudinal Dependency of the Solar Eclipse-Induced Ionosphere Response on 14 October 2023\",\"authors\":\"Jianhui He,&nbsp;Xinan Yue,&nbsp;Huijun Le,&nbsp;Ruoxi Li,&nbsp;Xing Li,&nbsp;Yiqun Yu,&nbsp;Wenlong Liu,&nbsp;Jinbin Cao\",\"doi\":\"10.1029/2025JA033765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyzed the three-dimensional (3-D) ionosphere response to the 14 October 2023 solar eclipse via assimilating multisource total electron content (TEC), including dense global navigation satellite system and the Constellation Observing System for Meteorology, Ionosphere, and Climate. The assimilations reveal a latitudinal dependency of the eclipse-induced TEC depletion, with larger reductions occurring at middle latitudes. In contrast to the electron density depletion throughout all ionosphere heights at middle latitudes, the equatorial ionization anomaly (EIA) region exhibits an altitudinal variation and an asymmetry pattern in density response. The implemented National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model simulations align well with the 3-D electron density assimilations. Diagnostic analysis indicates that the photo-chemical process plays a primary role in the larger depletion at middle latitudes, and the neutral wind transport provides a minor secondary contribution. In contrast, wind transport emerges as a dominant factor near the EIA region. The transequatorial plasma transport associated with northward neutral wind, driven by eclipse-induced local cooling, combined with partly enhanced upward ExB drift, mitigates the total TEC depletion near the EIA region. This study highlights the importance of the dynamic coupling for a self-consistent I-T system between the neutral atmosphere and the ionosphere during eclipses.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025JA033765\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA033765","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

利用密集全球导航卫星系统和气象、电离层和气候星座观测系统等多源总电子含量(TEC)数据,分析了2023年10月14日日食的三维电离层响应。同化结果表明,日食引起的TEC损耗具有纬度依赖性,在中纬度地区出现较大的减少。与中纬度所有电离层高度的电子密度耗竭相反,赤道电离异常(EIA)区在密度响应上表现出高度变化和不对称模式。实施的国家大气研究中心热层电离层电动力学环流模型模拟与三维电子密度同化结果吻合良好。诊断分析表明,光化学过程在中纬度地区的大耗竭中起主要作用,中性风输运起次要作用。相反,在EIA区域附近,风输运成为主导因素。在日蚀引起的局部冷却的驱动下,与向北的中性风相关的跨期等离子体输运,加上部分增强的向上的ExB漂移,减轻了EIA区域附近的总TEC损耗。这项研究强调了日食期间中性大气和电离层之间自一致的I-T系统的动态耦合的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Latitudinal Dependency of the Solar Eclipse-Induced Ionosphere Response on 14 October 2023

We analyzed the three-dimensional (3-D) ionosphere response to the 14 October 2023 solar eclipse via assimilating multisource total electron content (TEC), including dense global navigation satellite system and the Constellation Observing System for Meteorology, Ionosphere, and Climate. The assimilations reveal a latitudinal dependency of the eclipse-induced TEC depletion, with larger reductions occurring at middle latitudes. In contrast to the electron density depletion throughout all ionosphere heights at middle latitudes, the equatorial ionization anomaly (EIA) region exhibits an altitudinal variation and an asymmetry pattern in density response. The implemented National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model simulations align well with the 3-D electron density assimilations. Diagnostic analysis indicates that the photo-chemical process plays a primary role in the larger depletion at middle latitudes, and the neutral wind transport provides a minor secondary contribution. In contrast, wind transport emerges as a dominant factor near the EIA region. The transequatorial plasma transport associated with northward neutral wind, driven by eclipse-induced local cooling, combined with partly enhanced upward ExB drift, mitigates the total TEC depletion near the EIA region. This study highlights the importance of the dynamic coupling for a self-consistent I-T system between the neutral atmosphere and the ionosphere during eclipses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信