{"title":"最大化海洋碱度增强(OAE)的可探测性,同时最小化其暴露风险:来自数值研究的见解","authors":"Bin Wang, Arnaud Laurent, Qiantong Pei, Jinyu Sheng, Dariia Atamanchuk, Katja Fennel","doi":"10.1029/2024EF005463","DOIUrl":null,"url":null,"abstract":"<p>Ocean alkalinity enhancement (OAE) can potentially remove gigatons of CO<sub>2</sub> from the atmosphere for durable storage in the ocean. Before implementing OAE at climate-relevant scales, questions about its safety and verifiability must be addressed. Operational deployment poses a dilemma between pursuing large detectability, essential for effective monitoring, reporting, and verification, and ensuring environmental safety and satisfying regulatory requirements. In this study, we present a computationally efficient approach, based on a high-resolution, coupled circulation-dissolution model of Halifax Harbor, to simulating the addition, transportation, dissolution, and sinking of various theoretical alkaline feedstocks for different dosages, seasons, and addition sites. Detectability and exposure risk of OAE are quantified and an approach for optimizing OAE deployment is demonstrated. Mean residence times (MRT) are calculated for different subregions and seasons. Results show that for a given amount of feedstock, summer is more favorable from the perspective of detectability but also creates higher exposure risks than other seasons because of a longer MRT. The exposure risk can be mitigated while maintaining large detectability by choosing optimal feedstocks with different characteristics for different seasons. The exposure risk can also be reduced by spreading alkalinity over multiple addition sites. The optimum allocation, where the largest detectability is sought without violating regulatory requirements, is specific to each season, dosage, and choice of feedstock. OAE deployments should be tailored taking into account local hydrography, season, dosage, and feedstock characteristics. Our approach provides a practical avenue for optimizing deployments.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 4","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005463","citationCount":"0","resultStr":"{\"title\":\"Maximizing the Detectability of Ocean Alkalinity Enhancement (OAE) While Minimizing Its Exposure Risks: Insights From a Numerical Study\",\"authors\":\"Bin Wang, Arnaud Laurent, Qiantong Pei, Jinyu Sheng, Dariia Atamanchuk, Katja Fennel\",\"doi\":\"10.1029/2024EF005463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ocean alkalinity enhancement (OAE) can potentially remove gigatons of CO<sub>2</sub> from the atmosphere for durable storage in the ocean. Before implementing OAE at climate-relevant scales, questions about its safety and verifiability must be addressed. Operational deployment poses a dilemma between pursuing large detectability, essential for effective monitoring, reporting, and verification, and ensuring environmental safety and satisfying regulatory requirements. In this study, we present a computationally efficient approach, based on a high-resolution, coupled circulation-dissolution model of Halifax Harbor, to simulating the addition, transportation, dissolution, and sinking of various theoretical alkaline feedstocks for different dosages, seasons, and addition sites. Detectability and exposure risk of OAE are quantified and an approach for optimizing OAE deployment is demonstrated. Mean residence times (MRT) are calculated for different subregions and seasons. Results show that for a given amount of feedstock, summer is more favorable from the perspective of detectability but also creates higher exposure risks than other seasons because of a longer MRT. The exposure risk can be mitigated while maintaining large detectability by choosing optimal feedstocks with different characteristics for different seasons. The exposure risk can also be reduced by spreading alkalinity over multiple addition sites. The optimum allocation, where the largest detectability is sought without violating regulatory requirements, is specific to each season, dosage, and choice of feedstock. OAE deployments should be tailored taking into account local hydrography, season, dosage, and feedstock characteristics. Our approach provides a practical avenue for optimizing deployments.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005463\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005463\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005463","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Maximizing the Detectability of Ocean Alkalinity Enhancement (OAE) While Minimizing Its Exposure Risks: Insights From a Numerical Study
Ocean alkalinity enhancement (OAE) can potentially remove gigatons of CO2 from the atmosphere for durable storage in the ocean. Before implementing OAE at climate-relevant scales, questions about its safety and verifiability must be addressed. Operational deployment poses a dilemma between pursuing large detectability, essential for effective monitoring, reporting, and verification, and ensuring environmental safety and satisfying regulatory requirements. In this study, we present a computationally efficient approach, based on a high-resolution, coupled circulation-dissolution model of Halifax Harbor, to simulating the addition, transportation, dissolution, and sinking of various theoretical alkaline feedstocks for different dosages, seasons, and addition sites. Detectability and exposure risk of OAE are quantified and an approach for optimizing OAE deployment is demonstrated. Mean residence times (MRT) are calculated for different subregions and seasons. Results show that for a given amount of feedstock, summer is more favorable from the perspective of detectability but also creates higher exposure risks than other seasons because of a longer MRT. The exposure risk can be mitigated while maintaining large detectability by choosing optimal feedstocks with different characteristics for different seasons. The exposure risk can also be reduced by spreading alkalinity over multiple addition sites. The optimum allocation, where the largest detectability is sought without violating regulatory requirements, is specific to each season, dosage, and choice of feedstock. OAE deployments should be tailored taking into account local hydrography, season, dosage, and feedstock characteristics. Our approach provides a practical avenue for optimizing deployments.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.